GNNRecom/gnnrec/hge/rhgnn/train.py

86 lines
4.1 KiB
Python
Raw Permalink Normal View History

2021-11-16 07:04:52 +00:00
import argparse
import warnings
import torch
import torch.nn.functional as F
import torch.optim as optim
from dgl.dataloading import MultiLayerNeighborSampler, NodeDataLoader
from tqdm import tqdm
from gnnrec.hge.rhgnn.model import RHGNN
from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, evaluate, \
METRICS_STR
def train(args):
set_random_seed(args.seed)
device = get_device(args.device)
data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, evaluator = \
load_data(args.dataset, device)
add_node_feat(g, 'pretrained', args.node_embed_path, True)
sampler = MultiLayerNeighborSampler(list(range(args.neighbor_size, args.neighbor_size + args.num_layers)))
train_loader = NodeDataLoader(g, {predict_ntype: train_idx}, sampler, device=device, batch_size=args.batch_size)
loader = NodeDataLoader(g, {predict_ntype: g.nodes(predict_ntype)}, sampler, device=device, batch_size=args.batch_size)
model = RHGNN(
{ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes},
args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_rel_hidden, args.num_heads,
g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout
).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=len(train_loader) * args.epochs, eta_min=args.lr / 100
)
warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported')
for epoch in range(args.epochs):
model.train()
losses = []
for input_nodes, output_nodes, blocks in tqdm(train_loader):
batch_logits = model(blocks, blocks[0].srcdata['feat'])
batch_labels = labels[output_nodes[predict_ntype]]
loss = F.cross_entropy(batch_logits, batch_labels)
losses.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
torch.cuda.empty_cache()
print('Epoch {:d} | Loss {:.4f}'.format(epoch, sum(losses) / len(losses)))
if epoch % args.eval_every == 0 or epoch == args.epochs - 1:
print(METRICS_STR.format(*evaluate(
model, loader, g, labels, data.num_classes, predict_ntype,
train_idx, val_idx, test_idx, evaluator
)))
if args.save_path:
torch.save(model.cpu().state_dict(), args.save_path)
print('模型已保存到', args.save_path)
def main():
parser = argparse.ArgumentParser(description='训练R-HGNN模型')
parser.add_argument('--seed', type=int, default=0, help='随机数种子')
parser.add_argument('--device', type=int, default=0, help='GPU设备')
parser.add_argument('--dataset', choices=['ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集')
parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数')
parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数')
parser.add_argument('--num-heads', type=int, default=8, help='注意力头数')
parser.add_argument('--num-layers', type=int, default=2, help='层数')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率')
parser.add_argument('--epochs', type=int, default=200, help='训练epoch数')
parser.add_argument('--batch-size', type=int, default=1024, help='批大小')
parser.add_argument('--neighbor-size', type=int, default=10, help='邻居采样数')
parser.add_argument('--lr', type=float, default=0.001, help='学习率')
parser.add_argument('--weight-decay', type=float, default=0.0, help='权重衰减')
parser.add_argument('--eval-every', type=int, default=10, help='每多少个epoch计算一次准确率')
parser.add_argument('--save-path', help='模型保存路径')
parser.add_argument('node_embed_path', help='预训练顶点嵌入路径')
args = parser.parse_args()
print(args)
train(args)
if __name__ == '__main__':
main()