import argparse import warnings import torch import torch.nn.functional as F import torch.optim as optim from dgl.dataloading import MultiLayerNeighborSampler, NodeDataLoader from tqdm import tqdm from gnnrec.hge.rhgnn.model import RHGNN from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, evaluate, \ METRICS_STR def train(args): set_random_seed(args.seed) device = get_device(args.device) data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, evaluator = \ load_data(args.dataset, device) add_node_feat(g, 'pretrained', args.node_embed_path, True) sampler = MultiLayerNeighborSampler(list(range(args.neighbor_size, args.neighbor_size + args.num_layers))) train_loader = NodeDataLoader(g, {predict_ntype: train_idx}, sampler, device=device, batch_size=args.batch_size) loader = NodeDataLoader(g, {predict_ntype: g.nodes(predict_ntype)}, sampler, device=device, batch_size=args.batch_size) model = RHGNN( {ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes}, args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_rel_hidden, args.num_heads, g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout ).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=len(train_loader) * args.epochs, eta_min=args.lr / 100 ) warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported') for epoch in range(args.epochs): model.train() losses = [] for input_nodes, output_nodes, blocks in tqdm(train_loader): batch_logits = model(blocks, blocks[0].srcdata['feat']) batch_labels = labels[output_nodes[predict_ntype]] loss = F.cross_entropy(batch_logits, batch_labels) losses.append(loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() torch.cuda.empty_cache() print('Epoch {:d} | Loss {:.4f}'.format(epoch, sum(losses) / len(losses))) if epoch % args.eval_every == 0 or epoch == args.epochs - 1: print(METRICS_STR.format(*evaluate( model, loader, g, labels, data.num_classes, predict_ntype, train_idx, val_idx, test_idx, evaluator ))) if args.save_path: torch.save(model.cpu().state_dict(), args.save_path) print('模型已保存到', args.save_path) def main(): parser = argparse.ArgumentParser(description='训练R-HGNN模型') parser.add_argument('--seed', type=int, default=0, help='随机数种子') parser.add_argument('--device', type=int, default=0, help='GPU设备') parser.add_argument('--dataset', choices=['ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集') parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数') parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数') parser.add_argument('--num-heads', type=int, default=8, help='注意力头数') parser.add_argument('--num-layers', type=int, default=2, help='层数') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率') parser.add_argument('--epochs', type=int, default=200, help='训练epoch数') parser.add_argument('--batch-size', type=int, default=1024, help='批大小') parser.add_argument('--neighbor-size', type=int, default=10, help='邻居采样数') parser.add_argument('--lr', type=float, default=0.001, help='学习率') parser.add_argument('--weight-decay', type=float, default=0.0, help='权重衰减') parser.add_argument('--eval-every', type=int, default=10, help='每多少个epoch计算一次准确率') parser.add_argument('--save-path', help='模型保存路径') parser.add_argument('node_embed_path', help='预训练顶点嵌入路径') args = parser.parse_args() print(args) train(args) if __name__ == '__main__': main()