Steganalysis/PhaseAwareNet_SRC/Caffe/phase_aware_net_train.prototxt

464 lines
6.6 KiB
Plaintext

layer {
name: "data"
type: "Python"
top: "data"
top: "label"
python_param {
module: "AugStegoDataLayer"
layer: "AugmentDataLayerSync"
param_str: "{\'im_shape\': [512, 512], \'root\': \'/home/mchen/tmp/caffe/data/JStego/JUNI_0.4/\', \'split\': \'train\', \'batch_size\': 40}"
}
}
layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 4
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "constant"
value: 0.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv0"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 8
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.00999999977648
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "abs1"
type: "AbsVal"
bottom: "conv1"
top: "abs1"
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "abs1"
top: "bn1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
moving_average_fraction: 0.980000019073
eps: 9.99999974738e-05
scale_filler {
type: "constant"
value: 1.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "tanh1"
type: "TanH"
bottom: "bn1"
top: "bn1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "bn1"
top: "conv2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 16
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.00999999977648
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "bn2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
moving_average_fraction: 0.980000019073
eps: 9.99999974738e-05
scale_filler {
type: "constant"
value: 1.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "tanh2"
type: "TanH"
bottom: "bn2"
top: "bn2"
}
layer {
name: "sbp"
type: "SplitByPhase"
bottom: "bn2"
top: "sbp"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "sbp"
top: "conv3"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.00999999977648
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "bn3"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
moving_average_fraction: 0.980000019073
eps: 9.99999974738e-05
scale_filler {
type: "constant"
value: 1.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "bn3"
top: "bn3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "bn3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 5
stride: 2
pad: 1
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.00999999977648
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "bn4"
type: "BatchNorm"
bottom: "conv4"
top: "bn4"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
moving_average_fraction: 0.980000019073
eps: 9.99999974738e-05
scale_filler {
type: "constant"
value: 1.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "bn4"
top: "bn4"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "bn4"
top: "pool4"
pooling_param {
pool: AVE
kernel_size: 5
stride: 2
pad: 1
}
}
layer {
name: "conv5"
type: "Convolution"
bottom: "pool4"
top: "conv5"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.00999999977648
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "bn5"
type: "BatchNorm"
bottom: "conv5"
top: "bn5"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
batch_norm_param {
moving_average_fraction: 0.980000019073
eps: 9.99999974738e-05
scale_filler {
type: "constant"
value: 1.0
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "bn5"
top: "bn5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "bn5"
top: "pool5"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.00999999977648
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc6"
bottom: "label"
top: "loss"
}
layer {
name: "acc"
type: "Accuracy"
bottom: "fc6"
bottom: "label"
top: "acc"
}