Steganalysis/SRNet/tflib/queues.py

68 lines
2.2 KiB
Python
Raw Normal View History

2021-12-30 11:48:37 +00:00
import tensorflow as tf
import threading
class GeneratorRunner():
"""
This class manage a multithreaded queue filled with a generator
"""
def __init__(self, generator, capacity):
"""
inputs: generator feeding the data, must have thread_idx
as parameter (but the parameter may be not used)
"""
self.generator = generator
_input = generator(0,1).__next__()
if type(_input) is not list:
raise ValueError("generator doesn't return" \
"a list: %r" % type(_input))
input_batch_size = _input[0].shape[0]
if not all(_input[i].shape[0] == input_batch_size for i in range(len(_input))):
raise ValueError("all the inputs doesn't have the same batch size,"\
"the batch sizes are: %s" % [_input[i].shape[0] for i in range(len(_input))])
self.data = []
self.dtypes = []
self.shapes = []
for i in range(len(_input)):
self.shapes.append(_input[i].shape[1:])
self.dtypes.append(_input[i].dtype)
self.data.append(tf.placeholder(dtype=self.dtypes[i], \
shape=(input_batch_size,) + self.shapes[i]))
self.queue = tf.FIFOQueue(capacity, shapes=self.shapes, \
dtypes=self.dtypes)
self.enqueue_op = self.queue.enqueue_many(self.data)
self.close_queue_op = self.queue.close(cancel_pending_enqueues=True)
def get_batched_inputs(self, batch_size):
"""
Return tensors containing a batch of generated data
"""
batch = self.queue.dequeue_many(batch_size)
return batch
def thread_main(self, sess, thread_idx=0, n_threads=1):
try:
for data in self.generator(thread_idx, n_threads):
sess.run(self.enqueue_op, feed_dict={i: d \
for i, d in zip(self.data, data)})
if self.stop_threads:
return
except RuntimeError:
pass
def start_threads(self, sess, n_threads=1):
self.stop_threads = False
self.threads = []
for n in range(n_threads):
t = threading.Thread(target=self.thread_main, args=(sess, n, n_threads))
t.daemon = True
t.start()
self.threads.append(t)
return self.threads
def stop_runner(self, sess):
self.stop_threads = True
sess.run(self.close_queue_op)
def queueSelection(runners, sel, batch_size):
selection_queue = tf.FIFOQueue.from_list(sel, [r.queue for r in runners])
return selection_queue.dequeue_many(batch_size)