import tensorflow as tf import threading class GeneratorRunner(): """ This class manage a multithreaded queue filled with a generator """ def __init__(self, generator, capacity): """ inputs: generator feeding the data, must have thread_idx as parameter (but the parameter may be not used) """ self.generator = generator _input = generator(0,1).__next__() if type(_input) is not list: raise ValueError("generator doesn't return" \ "a list: %r" % type(_input)) input_batch_size = _input[0].shape[0] if not all(_input[i].shape[0] == input_batch_size for i in range(len(_input))): raise ValueError("all the inputs doesn't have the same batch size,"\ "the batch sizes are: %s" % [_input[i].shape[0] for i in range(len(_input))]) self.data = [] self.dtypes = [] self.shapes = [] for i in range(len(_input)): self.shapes.append(_input[i].shape[1:]) self.dtypes.append(_input[i].dtype) self.data.append(tf.placeholder(dtype=self.dtypes[i], \ shape=(input_batch_size,) + self.shapes[i])) self.queue = tf.FIFOQueue(capacity, shapes=self.shapes, \ dtypes=self.dtypes) self.enqueue_op = self.queue.enqueue_many(self.data) self.close_queue_op = self.queue.close(cancel_pending_enqueues=True) def get_batched_inputs(self, batch_size): """ Return tensors containing a batch of generated data """ batch = self.queue.dequeue_many(batch_size) return batch def thread_main(self, sess, thread_idx=0, n_threads=1): try: for data in self.generator(thread_idx, n_threads): sess.run(self.enqueue_op, feed_dict={i: d \ for i, d in zip(self.data, data)}) if self.stop_threads: return except RuntimeError: pass def start_threads(self, sess, n_threads=1): self.stop_threads = False self.threads = [] for n in range(n_threads): t = threading.Thread(target=self.thread_main, args=(sess, n, n_threads)) t.daemon = True t.start() self.threads.append(t) return self.threads def stop_runner(self, sess): self.stop_threads = True sess.run(self.close_queue_op) def queueSelection(runners, sel, batch_size): selection_queue = tf.FIFOQueue.from_list(sel, [r.queue for r in runners]) return selection_queue.dequeue_many(batch_size)