76 lines
3.4 KiB
Python
76 lines
3.4 KiB
Python
import argparse
|
||
|
||
import dgl
|
||
import torch
|
||
import torch.nn.functional as F
|
||
|
||
from gnnrec.hge.cs.model import LabelPropagation
|
||
from gnnrec.hge.rhco.model import RHCO
|
||
from gnnrec.hge.utils import get_device, load_data, add_node_feat, calc_metrics
|
||
|
||
|
||
def smooth(base_pred, g, labels, mask, args):
|
||
cs = LabelPropagation(args.num_smooth_layers, args.smooth_alpha, args.smooth_norm)
|
||
labels = F.one_hot(labels).float()
|
||
base_pred[mask] = labels[mask]
|
||
return cs(g, base_pred)
|
||
|
||
|
||
def main():
|
||
args = parse_args()
|
||
print(args)
|
||
device = get_device(args.device)
|
||
data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, evaluator = \
|
||
load_data(args.dataset, device)
|
||
add_node_feat(g, 'pretrained', args.node_embed_path, True)
|
||
if args.dataset == 'oag-venue':
|
||
labels[labels == -1] = 0
|
||
(*mgs, pos_g), _ = dgl.load_graphs(args.pos_graph_path)
|
||
pos_g = pos_g.to(device)
|
||
|
||
model = RHCO(
|
||
{ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes},
|
||
args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_heads,
|
||
g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout,
|
||
len(mgs), args.tau, args.lambda_
|
||
).to(device)
|
||
model.load_state_dict(torch.load(args.model_path, map_location=device))
|
||
model.eval()
|
||
|
||
base_pred = model.get_embeds(g, args.neighbor_size, args.batch_size, device)
|
||
mask = torch.cat([train_idx, val_idx])
|
||
logits = smooth(base_pred, pos_g, labels, mask, args)
|
||
_, _, test_acc, _, _, test_f1 = calc_metrics(logits, labels, train_idx, val_idx, test_idx, evaluator)
|
||
print('After smoothing: Test Acc {:.4f} | Test Macro-F1 {:.4f}'.format(test_acc, test_f1))
|
||
|
||
|
||
def parse_args():
|
||
parser = argparse.ArgumentParser(description='RHCO+C&S(仅Smooth步骤)')
|
||
parser.add_argument('--device', type=int, default=0, help='GPU设备')
|
||
parser.add_argument('--dataset', choices=['ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集')
|
||
# RHCO
|
||
parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数')
|
||
parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数')
|
||
parser.add_argument('--num-heads', type=int, default=8, help='注意力头数')
|
||
parser.add_argument('--num-layers', type=int, default=2, help='层数')
|
||
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率')
|
||
parser.add_argument('--tau', type=float, default=0.8, help='温度参数')
|
||
parser.add_argument('--lambda', type=float, default=0.5, dest='lambda_', help='对比损失的平衡系数')
|
||
parser.add_argument('--batch-size', type=int, default=1024, help='批大小')
|
||
parser.add_argument('--neighbor-size', type=int, default=10, help='邻居采样数')
|
||
parser.add_argument('node_embed_path', help='预训练顶点嵌入路径')
|
||
parser.add_argument('pos_graph_path', help='正样本图保存路径')
|
||
parser.add_argument('model_path', help='预训练的模型保存路径')
|
||
# C&S
|
||
parser.add_argument('--num-smooth-layers', type=int, default=50, help='Smooth步骤传播层数')
|
||
parser.add_argument('--smooth-alpha', type=float, default=0.5, help='Smooth步骤α值')
|
||
parser.add_argument(
|
||
'--smooth-norm', choices=['left', 'right', 'both'], default='right',
|
||
help='Smooth步骤归一化方式'
|
||
)
|
||
return parser.parse_args()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|