import argparse import json import math import warnings import numpy as np import torch import torch.optim as optim import torch.nn.functional as F from dgl.dataloading import MultiLayerNeighborSampler, NodeDataLoader from sklearn.metrics import ndcg_score from tqdm import tqdm from gnnrec.config import DATA_DIR from gnnrec.hge.rhgnn.model import RHGNN from gnnrec.hge.utils import set_random_seed, get_device, add_reverse_edges, add_node_feat from gnnrec.kgrec.data import OAGCSDataset from gnnrec.kgrec.utils import TripletNodeDataLoader def load_data(device): g = add_reverse_edges(OAGCSDataset()[0]).to(device) field_feat = g.nodes['field'].data['feat'] with open(DATA_DIR / 'rank/author_rank_triplets.txt') as f: triplets = torch.tensor([[int(x) for x in line.split()] for line in f], device=device) with open(DATA_DIR / 'rank/author_rank_train.json') as f: author_rank_train = json.load(f) train_fields = list(author_rank_train) true_relevance = np.zeros((len(train_fields), g.num_nodes('author')), dtype=np.int32) for i, f in enumerate(train_fields): for r, a in enumerate(author_rank_train[f]): true_relevance[i, a] = math.ceil((100 - r) / 10) train_fields = list(map(int, train_fields)) return g, field_feat, triplets, true_relevance, train_fields def train(args): set_random_seed(args.seed) device = get_device(args.device) g, field_feat, triplets, true_relevance, train_fields = load_data(device) add_node_feat(g, 'pretrained', args.node_embed_path) sampler = MultiLayerNeighborSampler([args.neighbor_size] * args.num_layers) triplet_loader = TripletNodeDataLoader(g, triplets, sampler, device, batch_size=args.batch_size) node_loader = NodeDataLoader(g, {'author': g.nodes('author')}, sampler, device=device, batch_size=args.batch_size) model = RHGNN( {ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes}, args.num_hidden, field_feat.shape[1], args.num_rel_hidden, args.num_rel_hidden, args.num_heads, g.ntypes, g.canonical_etypes, 'author', args.num_layers, args.dropout ).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=len(triplet_loader) * args.epochs, eta_min=args.lr / 100 ) warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported') for epoch in range(args.epochs): model.train() losses = [] for batch, output_nodes, blocks in tqdm(triplet_loader): batch_logits = model(blocks, blocks[0].srcdata['feat']) aid_map = {a: i for i, a in enumerate(output_nodes.tolist())} anchor = field_feat[batch[:, 0]] positive = batch_logits[[aid_map[a] for a in batch[:, 1].tolist()]] negative = batch_logits[[aid_map[a] for a in batch[:, 2].tolist()]] loss = F.triplet_margin_loss(anchor, positive, negative) losses.append(loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() torch.cuda.empty_cache() print('Epoch {:d} | Loss {:.4f}'.format(epoch, sum(losses) / len(losses))) torch.save(model.state_dict(), args.model_save_path) if epoch % args.eval_every == 0 or epoch == args.epochs - 1: print('nDCG@{}={:.4f}'.format(args.k, evaluate( model, node_loader, g, field_feat.shape[1], 'author', field_feat[train_fields], true_relevance, args.k ))) torch.save(model.state_dict(), args.model_save_path) print('模型已保存到', args.model_save_path) author_embeds = infer(model, node_loader, g, field_feat.shape[1], 'author') torch.save(author_embeds.cpu(), args.author_embed_save_path) print('学者嵌入已保存到', args.author_embed_save_path) @torch.no_grad() def evaluate(model, loader, g, out_dim, predict_ntype, field_feat, true_relevance, k): embeds = infer(model, loader, g, out_dim, predict_ntype) scores = torch.mm(field_feat, embeds.t()).detach().cpu().numpy() return ndcg_score(true_relevance, scores, k=k, ignore_ties=True) @torch.no_grad() def infer(model, loader, g, out_dim, predict_ntype): model.eval() embeds = torch.zeros((g.num_nodes(predict_ntype), out_dim), device=g.device) for _, output_nodes, blocks in tqdm(loader): embeds[output_nodes[predict_ntype]] = model(blocks, blocks[0].srcdata['feat']) return embeds def main(): parser = argparse.ArgumentParser(description='GARec算法 训练GNN模型') parser.add_argument('--seed', type=int, default=0, help='随机数种子') parser.add_argument('--device', type=int, default=0, help='GPU设备') # R-HGNN parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数') parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数') parser.add_argument('--num-heads', type=int, default=8, help='注意力头数') parser.add_argument('--num-layers', type=int, default=2, help='层数') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率') parser.add_argument('--epochs', type=int, default=200, help='训练epoch数') parser.add_argument('--batch-size', type=int, default=1024, help='批大小') parser.add_argument('--neighbor-size', type=int, default=10, help='邻居采样数') parser.add_argument('--lr', type=float, default=0.001, help='学习率') parser.add_argument('--eval-every', type=int, default=10, help='每多少个epoch评价一次') parser.add_argument('-k', type=int, default=20, help='评价指标只考虑top k的学者') parser.add_argument('node_embed_path', help='预训练顶点嵌入路径') parser.add_argument('model_save_path', help='模型保存路径') parser.add_argument('author_embed_save_path', help='学者嵌入保存路径') args = parser.parse_args() print(args) train(args) if __name__ == '__main__': main()