import argparse import dgl import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from dgl.dataloading import NodeDataLoader from torch.utils.data import DataLoader from tqdm import tqdm, trange from gnnrec.hge.heco.model import HeCo from gnnrec.hge.heco.sampler import PositiveSampler from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, accuracy, \ calc_metrics, METRICS_STR def train(args): set_random_seed(args.seed) device = get_device(args.device) data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, evaluator = \ load_data(args.dataset, device) add_node_feat(g, 'pretrained', args.node_embed_path) features = g.nodes[predict_ntype].data['feat'] relations = [r for r in g.canonical_etypes if r[2] == predict_ntype] (*mgs, pos_g), _ = dgl.load_graphs(args.pos_graph_path) mgs = [mg.to(device) for mg in mgs] pos_g = pos_g.to(device) pos = pos_g.in_edges(pos_g.nodes())[0].view(pos_g.num_nodes(), -1) # (N, T_pos) 每个目标顶点的正样本id id_loader = DataLoader(train_idx, batch_size=args.batch_size) sampler = PositiveSampler([None], pos) loader = NodeDataLoader(g, {predict_ntype: train_idx}, sampler, device=device, batch_size=args.batch_size) mg_loaders = [ NodeDataLoader(mg, train_idx, sampler, device=device, batch_size=args.batch_size) for mg in mgs ] pos_loader = NodeDataLoader(pos_g, train_idx, sampler, device=device, batch_size=args.batch_size) model = HeCo( {ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes}, args.num_hidden, args.feat_drop, args.attn_drop, relations, args.tau, args.lambda_ ).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) for epoch in range(args.epochs): model.train() losses = [] for (batch, (_, _, blocks), *mg_blocks, (_, _, pos_blocks)) in tqdm(zip(id_loader, loader, *mg_loaders, pos_loader)): block = blocks[0] mg_feats = [features[i] for i, _, _ in mg_blocks] mg_blocks = [b[0] for _, _, b in mg_blocks] pos_block = pos_blocks[0] batch_pos = torch.zeros(pos_block.num_dst_nodes(), batch.shape[0], dtype=torch.int, device=device) batch_pos[pos_block.in_edges(torch.arange(batch.shape[0], device=device))] = 1 loss, _ = model(block, block.srcdata['feat'], mg_blocks, mg_feats, batch_pos.t()) losses.append(loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() torch.cuda.empty_cache() print('Epoch {:d} | Loss {:.4f}'.format(epoch, sum(losses) / len(losses))) if epoch % args.eval_every == 0 or epoch == args.epochs - 1: print(METRICS_STR.format(*evaluate( model, mgs, features, device, labels, data.num_classes, train_idx, val_idx, test_idx, evaluator ))) def evaluate(model, mgs, feat, device, labels, num_classes, train_idx, val_idx, test_idx, evaluator): model.eval() embeds = model.get_embeds(mgs, [feat] * len(mgs)) clf = nn.Linear(embeds.shape[1], num_classes).to(device) optimizer = optim.Adam(clf.parameters(), lr=0.05) best_acc, best_logits = 0, None for epoch in trange(200): clf.train() logits = clf(embeds) loss = F.cross_entropy(logits[train_idx], labels[train_idx]) optimizer.zero_grad() loss.backward() optimizer.step() with torch.no_grad(): clf.eval() logits = clf(embeds) predict = logits.argmax(dim=1) if accuracy(predict[val_idx], labels[val_idx]) > best_acc: best_logits = logits return calc_metrics(best_logits, labels, train_idx, val_idx, test_idx, evaluator) def main(): parser = argparse.ArgumentParser(description='训练HeCo模型') parser.add_argument('--seed', type=int, default=0, help='随机数种子') parser.add_argument('--device', type=int, default=0, help='GPU设备') parser.add_argument('--dataset', choices=['ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集') parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数') parser.add_argument('--feat-drop', type=float, default=0.3, help='特征dropout') parser.add_argument('--attn-drop', type=float, default=0.5, help='注意力dropout') parser.add_argument('--tau', type=float, default=0.8, help='温度参数') parser.add_argument('--lambda', type=float, default=0.5, dest='lambda_', help='对比损失的平衡系数') parser.add_argument('--epochs', type=int, default=200, help='训练epoch数') parser.add_argument('--batch-size', type=int, default=1024, help='批大小') parser.add_argument('--lr', type=float, default=0.0008, help='学习率') parser.add_argument('--eval-every', type=int, default=10, help='每多少个epoch计算一次准确率') parser.add_argument('node_embed_path', help='预训练顶点嵌入路径') parser.add_argument('pos_graph_path', help='正样本图路径') args = parser.parse_args() print(args) train(args) if __name__ == '__main__': main()