import argparse import warnings import dgl import torch import torch.nn.functional as F import torch.optim as optim from gnnrec.hge.rhco.model import RHCOFull from gnnrec.hge.rhco.smooth import smooth from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, calc_metrics, \ METRICS_STR def train(args): set_random_seed(args.seed) device = get_device(args.device) data, g, features, labels, predict_ntype, train_idx, val_idx, test_idx, _ = \ load_data(args.dataset, device) add_node_feat(g, 'one-hot') (*mgs, pos_g), _ = dgl.load_graphs(args.pos_graph_path) mgs = [mg.to(device) for mg in mgs] if args.use_data_pos: pos_v, pos_u = data.pos pos_g = dgl.graph((pos_u, pos_v), device=device) pos = torch.zeros((g.num_nodes(predict_ntype), g.num_nodes(predict_ntype)), dtype=torch.int, device=device) pos[data.pos] = 1 model = RHCOFull( {ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes}, args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_heads, g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout, len(mgs), args.tau, args.lambda_ ).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=args.epochs, eta_min=args.lr / 100 ) alpha = args.contrast_weight warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported') for epoch in range(args.epochs): model.train() contrast_loss, logits = model(g, g.ndata['feat'], mgs, features, pos) clf_loss = F.cross_entropy(logits[train_idx], labels[train_idx]) loss = alpha * contrast_loss + (1 - alpha) * clf_loss optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() torch.cuda.empty_cache() print(('Epoch {:d} | Loss {:.4f} | ' + METRICS_STR).format( epoch, loss.item(), *evaluate(model, g, labels, train_idx, val_idx, test_idx) )) model.eval() _, base_pred = model(g, g.ndata['feat'], mgs, features, pos) mask = torch.cat([train_idx, val_idx]) logits = smooth(base_pred, pos_g, labels, mask, args) _, _, test_acc, _, _, test_f1 = calc_metrics(logits, labels, train_idx, val_idx, test_idx) print('After smoothing: Test Acc {:.4f} | Test Macro-F1 {:.4f}'.format(test_acc, test_f1)) @torch.no_grad() def evaluate(model, g, labels, train_idx, val_idx, test_idx): model.eval() embeds = model.get_embeds(g) return calc_metrics(embeds, labels, train_idx, val_idx, test_idx) def main(): parser = argparse.ArgumentParser(description='训练RHCO模型(full-batch)') parser.add_argument('--seed', type=int, default=0, help='随机数种子') parser.add_argument('--device', type=int, default=0, help='GPU设备') parser.add_argument('--dataset', choices=['acm', 'dblp'], default='acm', help='数据集') parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数') parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数') parser.add_argument('--num-heads', type=int, default=8, help='注意力头数') parser.add_argument('--num-layers', type=int, default=2, help='层数') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率') parser.add_argument('--tau', type=float, default=0.8, help='温度参数') parser.add_argument('--lambda', type=float, default=0.5, dest='lambda_', help='对比损失的平衡系数') parser.add_argument('--epochs', type=int, default=10, help='训练epoch数') parser.add_argument('--lr', type=float, default=0.001, help='学习率') parser.add_argument('--contrast-weight', type=float, default=0.5, help='对比损失权重') parser.add_argument('--num-smooth-layers', type=int, default=50, help='Smooth步骤传播层数') parser.add_argument('--smooth-alpha', type=float, default=0.5, help='Smooth步骤α值') parser.add_argument( '--smooth-norm', choices=['left', 'right', 'both'], default='right', help='Smooth步骤归一化方式' ) parser.add_argument('--use-data-pos', action='store_true', help='使用数据集中的正样本图作为标签传播图') parser.add_argument('pos_graph_path', help='正样本图路径') args = parser.parse_args() print(args) train(args) if __name__ == '__main__': main()