import argparse import dgl import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from gnnrec.hge.cs.model import CorrectAndSmooth from gnnrec.hge.utils import set_random_seed, get_device, load_data, calc_metrics, METRICS_STR def train_base_model(base_model, feats, labels, train_idx, val_idx, test_idx, evaluator, args): print('Training base model...') optimizer = optim.Adam(base_model.parameters(), lr=args.lr) for epoch in range(args.epochs): base_model.train() logits = base_model(feats) loss = F.cross_entropy(logits[train_idx], labels[train_idx]) optimizer.zero_grad() loss.backward() optimizer.step() print(('Epoch {:d} | Loss {:.4f} | ' + METRICS_STR).format( epoch, loss.item(), *evaluate(base_model, feats, labels, train_idx, val_idx, test_idx, evaluator) )) @torch.no_grad() def evaluate(model, feats, labels, train_idx, val_idx, test_idx, evaluator): model.eval() logits = model(feats) return calc_metrics(logits, labels, train_idx, val_idx, test_idx, evaluator) def correct_and_smooth(base_model, g, feats, labels, train_idx, val_idx, test_idx, evaluator, args): print('Training C&S...') base_model.eval() base_pred = base_model(feats).softmax(dim=1) # 注意要softmax cs = CorrectAndSmooth( args.num_correct_layers, args.correct_alpha, args.correct_norm, args.num_smooth_layers, args.smooth_alpha, args.smooth_norm, args.scale ) mask = torch.cat([train_idx, val_idx]) logits = cs(g, F.one_hot(labels).float(), base_pred, mask) _, _, test_acc, _, _, test_f1 = calc_metrics(logits, labels, train_idx, val_idx, test_idx, evaluator) print('Test Acc {:.4f} | Test Macro-F1 {:.4f}'.format(test_acc, test_f1)) def train(args): set_random_seed(args.seed) device = get_device(args.device) data, _, feat, labels, _, train_idx, val_idx, test_idx, evaluator = \ load_data(args.dataset, device) feat = (feat - feat.mean(dim=0)) / feat.std(dim=0) # 标签传播图 if args.dataset in ('acm', 'dblp'): pos_v, pos_u = data.pos pg = dgl.graph((pos_u, pos_v), device=device) else: pg = dgl.load_graphs(args.prop_graph)[0][-1].to(device) if args.dataset == 'oag-venue': labels[labels == -1] = 0 base_model = nn.Linear(feat.shape[1], data.num_classes).to(device) train_base_model(base_model, feat, labels, train_idx, val_idx, test_idx, evaluator, args) correct_and_smooth(base_model, pg, feat, labels, train_idx, val_idx, test_idx, evaluator, args) def main(): parser = argparse.ArgumentParser(description='训练C&S模型') parser.add_argument('--seed', type=int, default=0, help='随机数种子') parser.add_argument('--device', type=int, default=0, help='GPU设备') parser.add_argument('--dataset', choices=['acm', 'dblp', 'ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集') # 基础模型 parser.add_argument('--epochs', type=int, default=300, help='基础模型训练epoch数') parser.add_argument('--lr', type=float, default=0.01, help='基础模型学习率') # C&S parser.add_argument('--prop-graph', help='标签传播图所在路径') parser.add_argument('--num-correct-layers', type=int, default=50, help='Correct步骤传播层数') parser.add_argument('--correct-alpha', type=float, default=0.5, help='Correct步骤α值') parser.add_argument( '--correct-norm', choices=['left', 'right', 'both'], default='both', help='Correct步骤归一化方式' ) parser.add_argument('--num-smooth-layers', type=int, default=50, help='Smooth步骤传播层数') parser.add_argument('--smooth-alpha', type=float, default=0.5, help='Smooth步骤α值') parser.add_argument( '--smooth-norm', choices=['left', 'right', 'both'], default='both', help='Smooth步骤归一化方式' ) parser.add_argument('--scale', type=float, default=20, help='放缩系数') args = parser.parse_args() print(args) train(args) if __name__ == '__main__': main()