GNNRecom/gnnrec/hge/rhco/train_full.py

101 lines
4.5 KiB
Python
Raw Normal View History

2021-11-16 07:04:52 +00:00
import argparse
import warnings
import dgl
import torch
import torch.nn.functional as F
import torch.optim as optim
from gnnrec.hge.rhco.model import RHCOFull
from gnnrec.hge.rhco.smooth import smooth
from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, calc_metrics, \
METRICS_STR
def train(args):
set_random_seed(args.seed)
device = get_device(args.device)
data, g, features, labels, predict_ntype, train_idx, val_idx, test_idx, _ = \
load_data(args.dataset, device)
add_node_feat(g, 'one-hot')
(*mgs, pos_g), _ = dgl.load_graphs(args.pos_graph_path)
mgs = [mg.to(device) for mg in mgs]
if args.use_data_pos:
pos_v, pos_u = data.pos
pos_g = dgl.graph((pos_u, pos_v), device=device)
pos = torch.zeros((g.num_nodes(predict_ntype), g.num_nodes(predict_ntype)), dtype=torch.int, device=device)
pos[data.pos] = 1
model = RHCOFull(
{ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes},
args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_heads,
g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout,
len(mgs), args.tau, args.lambda_
).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=args.epochs, eta_min=args.lr / 100
)
alpha = args.contrast_weight
warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported')
for epoch in range(args.epochs):
model.train()
contrast_loss, logits = model(g, g.ndata['feat'], mgs, features, pos)
clf_loss = F.cross_entropy(logits[train_idx], labels[train_idx])
loss = alpha * contrast_loss + (1 - alpha) * clf_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
torch.cuda.empty_cache()
print(('Epoch {:d} | Loss {:.4f} | ' + METRICS_STR).format(
epoch, loss.item(), *evaluate(model, g, labels, train_idx, val_idx, test_idx)
))
model.eval()
_, base_pred = model(g, g.ndata['feat'], mgs, features, pos)
mask = torch.cat([train_idx, val_idx])
logits = smooth(base_pred, pos_g, labels, mask, args)
_, _, test_acc, _, _, test_f1 = calc_metrics(logits, labels, train_idx, val_idx, test_idx)
print('After smoothing: Test Acc {:.4f} | Test Macro-F1 {:.4f}'.format(test_acc, test_f1))
@torch.no_grad()
def evaluate(model, g, labels, train_idx, val_idx, test_idx):
model.eval()
embeds = model.get_embeds(g)
return calc_metrics(embeds, labels, train_idx, val_idx, test_idx)
def main():
parser = argparse.ArgumentParser(description='训练RHCO模型(full-batch)')
parser.add_argument('--seed', type=int, default=0, help='随机数种子')
parser.add_argument('--device', type=int, default=0, help='GPU设备')
parser.add_argument('--dataset', choices=['acm', 'dblp'], default='acm', help='数据集')
parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数')
parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数')
parser.add_argument('--num-heads', type=int, default=8, help='注意力头数')
parser.add_argument('--num-layers', type=int, default=2, help='层数')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率')
parser.add_argument('--tau', type=float, default=0.8, help='温度参数')
parser.add_argument('--lambda', type=float, default=0.5, dest='lambda_', help='对比损失的平衡系数')
parser.add_argument('--epochs', type=int, default=10, help='训练epoch数')
parser.add_argument('--lr', type=float, default=0.001, help='学习率')
parser.add_argument('--contrast-weight', type=float, default=0.5, help='对比损失权重')
parser.add_argument('--num-smooth-layers', type=int, default=50, help='Smooth步骤传播层数')
parser.add_argument('--smooth-alpha', type=float, default=0.5, help='Smooth步骤α')
parser.add_argument(
'--smooth-norm', choices=['left', 'right', 'both'], default='right',
help='Smooth步骤归一化方式'
)
parser.add_argument('--use-data-pos', action='store_true', help='使用数据集中的正样本图作为标签传播图')
parser.add_argument('pos_graph_path', help='正样本图路径')
args = parser.parse_args()
print(args)
train(args)
if __name__ == '__main__':
main()