GNNRecom/gnnrec/hge/cs/train.py

102 lines
4.1 KiB
Python
Raw Normal View History

2021-11-16 07:04:52 +00:00
import argparse
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from gnnrec.hge.cs.model import CorrectAndSmooth
from gnnrec.hge.utils import set_random_seed, get_device, load_data, calc_metrics, METRICS_STR
def train_base_model(base_model, feats, labels, train_idx, val_idx, test_idx, evaluator, args):
print('Training base model...')
optimizer = optim.Adam(base_model.parameters(), lr=args.lr)
for epoch in range(args.epochs):
base_model.train()
logits = base_model(feats)
loss = F.cross_entropy(logits[train_idx], labels[train_idx])
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(('Epoch {:d} | Loss {:.4f} | ' + METRICS_STR).format(
epoch, loss.item(),
*evaluate(base_model, feats, labels, train_idx, val_idx, test_idx, evaluator)
))
@torch.no_grad()
def evaluate(model, feats, labels, train_idx, val_idx, test_idx, evaluator):
model.eval()
logits = model(feats)
return calc_metrics(logits, labels, train_idx, val_idx, test_idx, evaluator)
def correct_and_smooth(base_model, g, feats, labels, train_idx, val_idx, test_idx, evaluator, args):
print('Training C&S...')
base_model.eval()
base_pred = base_model(feats).softmax(dim=1) # 注意要softmax
cs = CorrectAndSmooth(
args.num_correct_layers, args.correct_alpha, args.correct_norm,
args.num_smooth_layers, args.smooth_alpha, args.smooth_norm, args.scale
)
mask = torch.cat([train_idx, val_idx])
logits = cs(g, F.one_hot(labels).float(), base_pred, mask)
_, _, test_acc, _, _, test_f1 = calc_metrics(logits, labels, train_idx, val_idx, test_idx, evaluator)
print('Test Acc {:.4f} | Test Macro-F1 {:.4f}'.format(test_acc, test_f1))
def train(args):
set_random_seed(args.seed)
device = get_device(args.device)
data, _, feat, labels, _, train_idx, val_idx, test_idx, evaluator = \
load_data(args.dataset, device)
feat = (feat - feat.mean(dim=0)) / feat.std(dim=0)
# 标签传播图
if args.dataset in ('acm', 'dblp'):
pos_v, pos_u = data.pos
pg = dgl.graph((pos_u, pos_v), device=device)
else:
pg = dgl.load_graphs(args.prop_graph)[0][-1].to(device)
if args.dataset == 'oag-venue':
labels[labels == -1] = 0
base_model = nn.Linear(feat.shape[1], data.num_classes).to(device)
train_base_model(base_model, feat, labels, train_idx, val_idx, test_idx, evaluator, args)
correct_and_smooth(base_model, pg, feat, labels, train_idx, val_idx, test_idx, evaluator, args)
def main():
parser = argparse.ArgumentParser(description='训练C&S模型')
parser.add_argument('--seed', type=int, default=0, help='随机数种子')
parser.add_argument('--device', type=int, default=0, help='GPU设备')
parser.add_argument('--dataset', choices=['acm', 'dblp', 'ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集')
# 基础模型
parser.add_argument('--epochs', type=int, default=300, help='基础模型训练epoch数')
parser.add_argument('--lr', type=float, default=0.01, help='基础模型学习率')
# C&S
parser.add_argument('--prop-graph', help='标签传播图所在路径')
parser.add_argument('--num-correct-layers', type=int, default=50, help='Correct步骤传播层数')
parser.add_argument('--correct-alpha', type=float, default=0.5, help='Correct步骤α')
parser.add_argument(
'--correct-norm', choices=['left', 'right', 'both'], default='both',
help='Correct步骤归一化方式'
)
parser.add_argument('--num-smooth-layers', type=int, default=50, help='Smooth步骤传播层数')
parser.add_argument('--smooth-alpha', type=float, default=0.5, help='Smooth步骤α')
parser.add_argument(
'--smooth-norm', choices=['left', 'right', 'both'], default='both',
help='Smooth步骤归一化方式'
)
parser.add_argument('--scale', type=float, default=20, help='放缩系数')
args = parser.parse_args()
print(args)
train(args)
if __name__ == '__main__':
main()