GNNRecom/gnnrec/hge/rhgnn/train_full.py

64 lines
2.7 KiB
Python
Raw Permalink Normal View History

2021-11-16 07:04:52 +00:00
import argparse
import warnings
import torch
import torch.nn.functional as F
import torch.optim as optim
from gnnrec.hge.rhgnn.model import RHGNNFull
from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, evaluate_full, \
METRICS_STR
def train(args):
set_random_seed(args.seed)
device = get_device(args.device)
data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, _ = \
load_data(args.dataset, device)
add_node_feat(g, 'one-hot')
model = RHGNNFull(
{ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes},
args.num_hidden, data.num_classes, args.num_rel_hidden, args.num_rel_hidden, args.num_heads,
g.ntypes, g.canonical_etypes, predict_ntype, args.num_layers, args.dropout
).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=args.epochs, eta_min=args.lr / 100
)
warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported')
for epoch in range(args.epochs):
model.train()
logits = model(g, g.ndata['feat'])
loss = F.cross_entropy(logits[train_idx], labels[train_idx])
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
torch.cuda.empty_cache()
print(('Epoch {:d} | Loss {:.4f} | ' + METRICS_STR).format(
epoch, loss.item(), *evaluate_full(model, g, labels, train_idx, val_idx, test_idx)
))
def main():
parser = argparse.ArgumentParser(description='训练R-HGNN模型(full-batch)')
parser.add_argument('--seed', type=int, default=0, help='随机数种子')
parser.add_argument('--device', type=int, default=0, help='GPU设备')
parser.add_argument('--dataset', choices=['acm', 'dblp'], default='acm', help='数据集')
parser.add_argument('--num-hidden', type=int, default=64, help='隐藏层维数')
parser.add_argument('--num-rel-hidden', type=int, default=8, help='关系表示的隐藏层维数')
parser.add_argument('--num-heads', type=int, default=8, help='注意力头数')
parser.add_argument('--num-layers', type=int, default=2, help='层数')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率')
parser.add_argument('--epochs', type=int, default=10, help='训练epoch数')
parser.add_argument('--lr', type=float, default=0.001, help='学习率')
parser.add_argument('--weight-decay', type=float, default=0.0, help='权重衰减')
args = parser.parse_args()
print(args)
train(args)
if __name__ == '__main__':
main()