84 lines
4.0 KiB
Python
84 lines
4.0 KiB
Python
|
import argparse
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.optim as optim
|
||
|
from dgl.dataloading import MultiLayerNeighborSampler, NodeDataLoader
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from gnnrec.hge.hgconv.model import HGConv
|
||
|
from gnnrec.hge.utils import set_random_seed, get_device, load_data, add_node_feat, evaluate, \
|
||
|
calc_metrics, METRICS_STR
|
||
|
|
||
|
|
||
|
def train(args):
|
||
|
set_random_seed(args.seed)
|
||
|
device = get_device(args.device)
|
||
|
data, g, _, labels, predict_ntype, train_idx, val_idx, test_idx, evaluator = \
|
||
|
load_data(args.dataset, device)
|
||
|
add_node_feat(g, args.node_feat, args.node_embed_path)
|
||
|
|
||
|
sampler = MultiLayerNeighborSampler([args.neighbor_size] * args.num_layers)
|
||
|
train_loader = NodeDataLoader(g, {predict_ntype: train_idx}, sampler, device=device, batch_size=args.batch_size)
|
||
|
loader = NodeDataLoader(g, {predict_ntype: g.nodes(predict_ntype)}, sampler, device=device, batch_size=args.batch_size)
|
||
|
|
||
|
model = HGConv(
|
||
|
{ntype: g.nodes[ntype].data['feat'].shape[1] for ntype in g.ntypes},
|
||
|
args.num_hidden, data.num_classes, args.num_heads, g.ntypes, g.canonical_etypes,
|
||
|
predict_ntype, args.num_layers, args.dropout, args.residual
|
||
|
).to(device)
|
||
|
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
|
||
|
warnings.filterwarnings('ignore', 'Setting attributes on ParameterDict is not supported')
|
||
|
for epoch in range(args.epochs):
|
||
|
model.train()
|
||
|
losses = []
|
||
|
for input_nodes, output_nodes, blocks in tqdm(train_loader):
|
||
|
batch_logits = model(blocks, blocks[0].srcdata['feat'])
|
||
|
batch_labels = labels[output_nodes[predict_ntype]]
|
||
|
loss = F.cross_entropy(batch_logits, batch_labels)
|
||
|
losses.append(loss.item())
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
torch.cuda.empty_cache()
|
||
|
print('Epoch {:d} | Loss {:.4f}'.format(epoch, sum(losses) / len(losses)))
|
||
|
if epoch % args.eval_every == 0 or epoch == args.epochs - 1:
|
||
|
print(METRICS_STR.format(*evaluate(
|
||
|
model, loader, g, labels, data.num_classes, predict_ntype,
|
||
|
train_idx, val_idx, test_idx, evaluator
|
||
|
)))
|
||
|
embeds = model.inference(g, g.ndata['feat'], device, args.batch_size)
|
||
|
print(METRICS_STR.format(*calc_metrics(embeds, labels, train_idx, val_idx, test_idx, evaluator)))
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser(description='训练HGConv模型')
|
||
|
parser.add_argument('--seed', type=int, default=8, help='随机数种子')
|
||
|
parser.add_argument('--device', type=int, default=0, help='GPU设备')
|
||
|
parser.add_argument('--dataset', choices=['ogbn-mag', 'oag-venue'], default='ogbn-mag', help='数据集')
|
||
|
parser.add_argument(
|
||
|
'--node-feat', choices=['average', 'pretrained'], default='pretrained',
|
||
|
help='如何获取无特征顶点的输入特征'
|
||
|
)
|
||
|
parser.add_argument('--node-embed-path', help='预训练顶点嵌入路径')
|
||
|
parser.add_argument('--num-hidden', type=int, default=32, help='隐藏层维数')
|
||
|
parser.add_argument('--num-heads', type=int, default=8, help='注意力头数')
|
||
|
parser.add_argument('--num-layers', type=int, default=2, help='层数')
|
||
|
parser.add_argument('--no-residual', action='store_false', help='不使用残差连接', dest='residual')
|
||
|
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout概率')
|
||
|
parser.add_argument('--epochs', type=int, default=100, help='训练epoch数')
|
||
|
parser.add_argument('--batch-size', type=int, default=4096, help='批大小')
|
||
|
parser.add_argument('--neighbor-size', type=int, default=10, help='邻居采样数')
|
||
|
parser.add_argument('--lr', type=float, default=0.001, help='学习率')
|
||
|
parser.add_argument('--weight-decay', type=float, default=0.0, help='权重衰减')
|
||
|
parser.add_argument('--eval-every', type=int, default=10, help='每多少个epoch计算一次准确率')
|
||
|
args = parser.parse_args()
|
||
|
print(args)
|
||
|
train(args)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|