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Using High-Dimensional Image Models toPerform Highly Undete
table SteganographyTomá² Pevný1, Tomá² Filler2, and Patri
k Bas3
1 Cze
h Te
hni
al University in Prague, Cze
h Republi
pevnak�gmail.
om

2 State University of New York in Binghamton, NY, USAtomas.�ller�gmail.
om
3 CNRS - LAGIS, Lille, Fran
epatri
k.bas�e
-lille.frAbstra
t. This paper presents a 
omplete methodology for designingpra
ti
al and highly-undete
table stegosystems for real digital media.The main design prin
iple is to minimize a suitably-de�ned distortionby means of e�
ient 
oding algorithm. The distortion is de�ned as aweighted di�eren
e of extended state-of-the-art feature ve
tors alreadyused in steganalysis. This allows us to �preserve� the model used by ste-ganalyst and thus be undete
table even for large payloads. This frame-work 
an be e�
iently implemented even when the dimensionality of thefeature set used by the embedder is larger than 107. The high dimen-sional model is ne
essary to avoid known se
urity weaknesses. Althoughhigh-dimensional models might be problem in steganalysis, we explain,why they are a

eptable in steganography. As an example, we introdu
eHUGO, a new embedding algorithm for spatial-domain digital imagesand we 
ontrast its performan
e with LSB mat
hing. On the BOWS2image database and in 
ontrast with LSB mat
hing, HUGO allows theembedder to hide 7× longer message with the same level of se
urity level.1 Introdu
tionThe main goal of a passive-warden steganographi
 
hannel [1℄ (stegosystem) be-tween Ali
e and Bob is to transmit a se
ret message hidden in an inno
uouslylooking obje
t without any possibility for the warden Eve to dete
t su
h 
om-muni
ation. A stegosystem is 
alled perfe
tly se
ure [2℄ if the 
over distributionexa
tly mat
hes the stego distribution. Although this problem has been solvedby the so-
alled �
over generation� [3,4,5℄, this solution requires exa
t knowledgeof the probability distribution on 
over obje
ts, whi
h is hard (if possible at all)to obtain for real digital media in pra
ti
e. The most 
ommon pra
ti
al solutionis to hide the message by making small perturbations with the hope that theseperturbations will be 
overed by image noise.One of the most popular embedding methods used with digital images is theLeast Signi�
ant Bit (LSB) repla
ement, where the LSBs of individual 
overelements are repla
ed with message bits. It has been qui
kly realized that the



asymmetry in the embedding operation4 is a potential weakness opening doors tothe development of highly a

urate targeted steganalyzers (see [6℄ and referen
estherein) pushing the se
ure payload almost to zero.A trivial modi�
ation of the LSB repla
ement method is LSB mat
hing (of-ten 
alled ±1 embedding). This algorithm randomly modulates pixel values by
±1 so that the LSBs of pixels mat
h the 
ommuni
ated message. Despite thesimilarity to LSB repla
ement, LSB mat
hing is mu
h harder to dete
t, be
ausethe embedding operation is no longer unbalan
ed. In fa
t, LSB mat
hing hasbeen shown to be near optimal [7℄ when only information from a single pixel
an be utilized. The biggest weakness of LSB mat
hing is the assumption thatimage noise is independent from pixel to pixel. It has been shown that this is nottrue in natural images, whi
h was in di�erent ways exploited by LSB mat
hingdete
tors [8,9,10℄.From the short overview of spatial domain steganography above, it is 
learlyseen that the embedding algorithms are not se
ure. This is mainly be
ause theirimage model is not general enough and some marginal or joint image statisti
sare not preserved. In this paper, we propose a novel method for designing newsteganographi
 algorithms allowing to use very general and high-dimensionalmodels 
overing various dependen
ies in natural images in order to 
reate morese
ure steganographi
 algorithms. The method follows and extends the best prin-
iples known in steganography and steganalysis so far.The proposed method relies on the prin
iple of minimal impa
t embed-ding [11℄, whi
h is revisited in Se
tion 2. This prin
iple allows de
ompositionof the design of steganographi
 algorithms into the design of the image modeland the 
oder. By virtue of this prin
iple, steganographi
 algorithms 
an be im-proved either by using a better 
oder, or by using a better model. Thus, theimage model be
omes one of the most important parts of the design. Se
tion 3 isdevoted to this problem. We explain why steganalyti
 features 
an be used as agood start to design a steganographi
 model, if they are extended to avoid over-�tting to a parti
ular steganalyzer. Although su
h steganographi
 models 
an bevery large (we give an example of a model with dimension 107), we argue that forsteganographi
 purposes su
h large dimension does not pose a problem. In Se
-tion 4, we pra
ti
ally demonstrate the presented method by 
onstru
ting a newsteganographi
 algorithm for the spatial domain based on the SPAM (Subtra
-tive Pixel Adja
en
y Matrix) features [10℄. The se
urity of the proposed s
hemeand the e�e
t of individual design elements on the se
urity is experimentallyveri�ed. The paper is 
on
luded in Se
tion 5.The ideas presented in this paper 
an been seen in prior art. (a) Virtually allsteganographi
 algorithms aim to minimize distortion to preserve some imagemodel. The image model is derived either from the image itself (e.g., F5 algo-rithm [12℄ and its improvement [13℄, Model Based Steganography [14℄, et
.), orthe distortion is de�ned by means of error introdu
ed by quantization. The lat-ter 
lass of algorithms (MMX [15℄ and its improvement [16℄, PQ [17℄, et
.) uses�side information� in the form of a higher quality image, whi
h is not available4 Even 
over elements are never de
reased whereas odd ones are never in
reased.



to the re
ipient (and Eve). (b) Many algorithms (F5 [12℄, nsF5 [13℄, MMX [15℄,and [16℄) already utilized various 
oding s
hemes (matrix embedding) to mini-mize the distortion. While early s
hemes (e.g., F5 or LSB mat
hing) used 
odingto minimize the number of embedding 
hanges, a signi�
ant departure was pro-posed in MMX, whi
h allowed more embedding 
hanges than optimal (with given
oding), in order to de
rease the overall distortion. Thus, MMX 
an be inter-preted as making lo
al 
ontent-adaptive embedding by means of 
oding, whi
his 
lose to the proposed s
heme.With respe
t to the above prior work, the main 
ontributions of this work areas follows. (a) We promote and advo
ate the use of high-dimensional image mod-els in steganography that 
annot be used in steganalysis (yet). (b) We separatethe image model from 
oding, whi
h allows simulating optimal 
oding and thus
omparing image models without the e�e
t of 
oding. Moreover, the message
an be hidden in parts of the image di�
ult for steganalysis while 
onsideringall pixels simultaneously during the embedding.Although the proposed steganographi
 s
heme might be 
onsidered as anadaptive, it is not adaptive in the usuall approa
h, when �rst good pixels aresele
ted [9,18,19℄ (e.g. pixels in noisy and textured areas) and than the messageis inserted in the image while modifying only the sele
ted pixels (e.g by usingwet paper 
odes). Our s
heme always uses all pixels for the embedding, but it
hanges them with probability inversely proportional to the dete
tability of their
hange.In the rest, we use the following notation. Small-
ase boldfa
e symbols areused for ve
tors and 
apital-
ase boldfa
e symbols for matri
es and possiblytensors. Symbols X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X areex
lusively used to represent intensities of n = n1n2-pixel 
over and stego image.For the sake of simpli
ity, we sometimes index the pixels with a single number,
X = (xi)

n
i=1 and similarly for stego image Y = (yi)

n
i=1.2 Minimizing Embedding Impa
tVirtually all pra
ti
al steganographi
 algorithms for digital media strive to mini-mize an ad ho
 embedding impa
t [11,20℄, whi
h, if properly de�ned, is 
orrelatedwith dete
tability. In its simplest form, embedding impa
t is simply the numberof 
hanges (known as matrix embedding). However, more general ways, as al-ready suggested by Crandal [21℄, should be 
onsidered. In general, the embeddingimpa
t is 
aptured by a non-negative distortion measure D : X × X → [0,∞].During embedding, the algorithm should �nd a stego image Y, whi
h (a) 
om-muni
ates a given message and (b) a
hieves minimal value of D(X,Y). Unfor-tunately, this problem is generally very di�
ult in pra
ti
e.From this reason, we 
onstrain ourselves to a well-studied spe
ial (but stillpowerful enough) 
ase assuming (a) binary embedding 
hanges5, i.e., |xi−yi| ≤ 1,5 Extensions to ternary 
ase 
an be done by the �e+1� 
onstru
tion des
ribed in [22℄.



i ∈ {1, . . . , n}, and (b) additive distortion measure in the form
D(X,Y) =

n
∑

i=1

ρi|xi − yi|. (1)The 
onstants 0 ≤ ρi ≤ ∞ are �xed parameters expressing 
osts of (or distortion
aused by) pixel 
hanges. The 
ase ρi = ∞ 
orresponds to the so-
alled wetpixel not allowed to be modi�ed during embedding. Noti
e that the additivityof the distortion fun
tion D implies that that the embedding 
hanges do notintera
t between ea
h other. This is a reasonable assumption, espe
ially if weassume low embedding rates and embedding 
hanges being far from ea
h other.Unfortunately, there are 
ases of important distortion measures whi
h 
annot bewritten in this form. One su
h 
ase will be introdu
ed in Se
tion 4.For additive distortion fun
tions (1), the following theorem taken from [11℄gives the minimal expe
ted distortion obtained by hiding m bits in an n-pixel
over obje
t.Theorem 1. Let ρ = (ρi)
n
i=1, 0 ≤ ρi < ∞, be the set of 
onstants de�ningthe additive distortion measure (1) for i ∈ {1, . . . , n}. Let 0 ≤ m ≤ n be thenumber of bits we want to 
ommuni
ate by using a binary embedding operation.The minimal expe
ted distortion has the following form
Dmin(m, n, ρ) =

n
∑

i=1

piρi,where
pi =

e−λρi

1 + e−λρi

(2)is the probability of 
hanging the ith pixel. The parameter λ is obtained by solving
−

n
∑

i=1

(

pi log2 pi + (1− pi) log2(1− pi)
)

= m. (3)The importan
e of Theorem 1 is in the separation of the image model (neededfor 
al
ulating 
onstants ρi) and the 
oding algorithm used in a pra
ti
al imple-mentation. By virtue of this separation, better steganographi
 algorithms 
an bederived by using better 
oding or by using a better image model. One important
onsequen
e is that, in order to study the e�e
t of the image model on stegano-graphi
 se
urity, no 
oding algorithm is needed at all! The optimal 
oding 
anbe simulated by �ipping ea
h pixel with probability pi as de�ned in (2).We use this separation prin
iple in Se
tion 4 to �nd a good image model usedto derive the 
osts ρi. The study of the loss introdu
ed by a pra
ti
al 
odingmethod is also in
luded.



3 From Steganalysis to SteganographyAlmost all state-of-the-art statisti
al steganalyzers (with the ex
eption of ste-ganalyzers for LSB repla
ement) are based on a 
ombination of steganalyti
 fea-tures and pattern re
ognition algorithms. In steganalysis, steganalyti
 featuresare used to redu
e the dimension of a spa
e of all 
over obje
ts, so that the pat-tern re
ognition algorithms 
an learn (if possible) the di�eren
e between 
overand stego obje
ts in this redu
ed feature spa
e. Using su
h a low-dimensionalmodel for designing steganography usually leads to overtraining to a parti
ularfeature set (this issue of feature set 
ompleteness is dis
ussed in [23,24℄). Keepingthis in mind, we believe that the features 
an serve as a good pre
ursor of theimage model to determine the embedding 
osts ρi. Although we show this tran-sition from steganalyti
 features to a steganographi
 model on spatial domainsteganography, we believe that the ideas and tools presented here 
an be usedin other domains and with other steganalyti
 features as well.We start by reviewing the re
ently proposed SPAM features [10℄ proposedto dete
t steganographi
 algorithms in spatial and transformed domains. Then,we dis
uss the problem of over�tting the steganographi
 model to steganalyti
features as well as the remedy by expanding the model beyond the 
apabilitiesof 
ontemporary pattern re
ognition algorithm. Finally, we propose a simplemethod to identify parts of the model that are more important for steganalysis.3.1 SPAM featuresIt is well known that values of neighboring pixels in natural images are notindependent. This is not only 
aused by the inherent smoothness of naturalimages, but also by the image pro
essing (de-mosai
king, sharpening, et
.) in theimage a
quisition devi
e. This pro
essing makes the noise, whi
h is independentin the raw sensor output, dependent in the �nal image. The latter sour
e ofdependen
ies is very important for steganalysis be
ause steganographi
 
hangestry to hide themselves within the image noise.The SPAM [10℄ features model dependen
ies between neighboring pixels bymeans of higher-order Markov 
hains. They have been designed to provide a low-dimensional model of image noise that 
an be used for steganalyti
 purposes. The
al
ulation of di�eren
es 
an be viewed as an appli
ation of high-pass �ltering,whi
h e�e
tively suppresses the image 
ontent and exposes the noise. The su

essof SPAM features in dete
ting wide range of steganographi
 algorithms [25℄suggests this model to be reasonable for steganalysis and steganography.The SPAM features model transition probabilities between neighboring pix-els along 8 dire
tions {←,→, ↓, ↑,տ,ց,ւ,ր}. Below, the 
al
ulation of thefeatures is explained on horizontal left-to-right dire
tion, be
ause for the otherdire
tions the 
al
ulations di�er only by di�erent indexing. All dire
tion-spe
i�
variables are denoted by a supers
ript showing the dire
tion.Let I ∈ X be an image of size n1 × n2. The 
al
ulation starts by 
omputingthe di�eren
e array D
•, whi
h is for a horizontal left-to-right dire
tion

D
→
ij = Iij − Ii,j+1,



for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. Depending on the desired order of thefeatures, either the �rst-order Markov pro
ess is used,
M
→
d1d2

= Pr(D→i,j+1 = d1|D
→
ij = d2), (4)or the se
ond-order Markov pro
ess is used,

M
→
d1d2d3

= Pr(D→i,j+2 = d1|D
→
i,j+1 = d2,D

→
ij = d3), (5)where di ∈ {−T, . . . , T }. The 
al
ulation of the features is �nished by separateaveraging of the horizontal and verti
al matri
es and the diagonal matri
es toform the �nal feature sets. With a slight abuse of notation, this averaging 
anbe written as

F
•
1,...,k =

1

4

[

M
→
• + M

←
• + M

↓
• + M

↑
•

]

,

F
•
k+1,...,2k =

1

4

[

M
ց
• + M

տ
• + M

ւ
• + M

ր
•

]

, (6)where k = (2T + 1)2 for the �rst-order features and k = (2T + 1)3 for these
ond-order features. In [10℄, the authors used T = 4 for the �rst-order features(leading to 162 features) and T = 3 for the se
ond-order features (leading to 686features).3.2 De
omposing SPAM featuresAlthough the se
ond-order SPAM features use 
onditional probabilities to modelpixel di�eren
es, their essential 
omponents are a
tually 
o-o

urren
e matri
es
C
→
d1d2

= Pr(D→ij = d1,D
→
i,j+1 = d2), (7)

C
→
d1d2d3

= Pr(D→ij = d1,D
→
i,j+1 = d2,D

→
i,j+2 = d3). (8)It is easy to show that the se
ond order SPAM features with T = 3 
an be dire
tlyobtained6 from the set {Ck

d1d2
,Ck

d1d2d3
|k ∈ {→, ↑,տ,ր},−3 ≤ di ≤ 3}. In fa
t,we observed that this set of 4×(343+49) = 1568 
o-o

urren
e features has onlyslightly inferior performan
e in dete
ting LSB mat
hing, whi
h we attribute toa smaller ratio of training samples per dimension (known as 
urse of dimension-ality). From this point of view, the distortion measure used to derive embedding
osts ρi should be designed to preserve the 
o-o

urren
e matri
es (7) and (8),be
ause their preservation implies the preservation of se
ond-order SPAM fea-tures.Although the idea of preservation of SPAM features is tempting, the distor-tion measure would not be general enough. The new s
heme would be so tied toa parti
ular steganalyti
 method that it 
an be expe
ted to be dete
table by aslight modi�
ation of the features. This problem of �over�tting� the distortion6 Observe that C

→

d1d2d3
= C

←

−d3,−d2,−d1
, and M

→

d1d2d3
= C

→

d3d2d1
/C→d2d1

.



measure to a parti
ular steganalyti
 method together with the need for a 
om-plete feature set has been already des
ribed [23,24℄ for the DCT domain. Here,we propose to resolve the issue of over�tting to a parti
ular model by expandingit beyond pra
ti
al limits of steganalysis (for this model). This 
an be easilydone in the 
ase of 
o-o

urren
e matri
es by in
reasing the range of 
overeddi�eren
es T.At this point, it is important to 
larify the di�eren
e between the e�e
ts ofmodel dimensionality for steganography and for steganalysis. The high-dimensionalmodels in steganalysis present a serious problem for subsequent ma
hine learningdue to the 
urse of dimensionality and related over�tting. Although the a
tualratio between the number of training samples and the model dimensionalitydepends on the used ma
hine learning algorithm and the problem, the rule ofthumb is to have ten times more samples than the model dimensionality (num-ber of features). These drawba
ks prevent the use of high-dimensional modelsin steganalysis. By 
ontrast, high-dimensional models in steganography do not
ause problems, be
ause there is no statisti
al learning involved. The 
over im-age provides the exa
t model to be preserved and, 
onsequently, there is no
urse of dimensionality, whi
h justi�es the use of high-dimensional models insteganography.An additional important pra
ti
al detail is that updating the 
o-o

urren
ematri
es to re�e
t one pixel 
hange is mu
h easier than updating the 
onditionalprobabilities (the former involves only addition and subtra
tion of a few itemsof the matri
es, while the latter involves division of the large part of the ma-tri
es). The e�
ient update of 
o-o

urren
e matri
es enables modeling a widerange of di�eren
es between pixels (the use of large T ) resulting in modelingmost di�eren
es (and pixels) in the image (and better preservation of the SPAMfeatures).3.3 Identi�
ation of dete
table parts of the modelsUnfortunately, the ideal 
ase, when the image model is fully preserved during theembedding, is virtually impossible to realize in pra
ti
e. It is therefore importantto identify parts of the model important for steganalysis and set appropriate 
ostsof pixel 
hanges ρi.The asso
iation of 
osts ρi to the modi�
ation of the model is in general verydi�
ult be
ause we do not know whi
h parts of the model are important. Here,we suggest to evaluate the individual elements of the model independently ofea
h other (any method for feature ranking 
an be used [26℄) and set the 
osts
ρi to re�e
t this ranking. The advantage of individual evaluation is that it 
anbe done qui
kly even for a large number of features. On the other hand, the indi-vidual evaluation of the model elements is 
ertainly not optimal, espe
ially fromthe ma
hine learning point of view. However, we believe (and our experiments
on�rm that) that the 
osts derived this way 
an be used as a good startingpoint. There is no doubt that other (and better) methods of deriving 
osts ρiexist.
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Fig. 1: Left: Values of FLD 
riteria (9) between the feature C
→

d1d2

al
ulated from 
overimages and stego images obtained by LSB mat
hing with full payload. Right: mean ofthe feature C

→

d1d2
over the set of 
over images from the BOWS2 database.Our approa
h works as follows. First, we 
reate a set of images embeddedwith a simulated maximum payload by a given embedding operation (in our
ase of spatial domain steganography, this amounts to randomly in
rease orde
rease the pixel value by one with probability 50%). Then, we use the 
riteriaoptimized in Fisher Linear Dis
riminant (FLD 
riteria) (9) to evaluate, howgood are individual features for dete
ting given embedding 
hanges. The valuesof FLD 
riteria (9) of individual elements may be either used dire
tly to setthe 
osts of embedding 
hanges ρi, whi
h might be dangerous due to the alreadydis
ussed problem of over�tting. Alternatively, they 
an be used to obtain insightinto the problem and set the 
osts heuristi
ally, whi
h is re
ommended. In therest of this se
tion, we use the analysis of the FLD 
riteria to identify parts ofthe 
o-o

urren
e model that 
an be used for embedding.For 
o-o

urren
e matri
es introdu
ed in the previous subse
tion, the valuesof FLD 
riteria for a single feature C

→
d1d2

(for �xed d1 and d2) 
an be written as
(

E[CX,→
d1d2

]− E[CY,→
d1d2

]
)2

E
[

C
X,→
d1d2
− E[CX,→

d1d2
]
]2

+ E
[

C
Y,→
d1d2

− E[CY,→
d1d2

]
]2 , (9)where E[·] stands for the empiri
al mean (obtained in our 
ase over all imagesin the BOWS27 image database), and C

X,→
d1d2

, C
Y,→
d1d2

stand for a single elementof the 
o-o

urren
e matrix C
→
d1d2


al
ulated from the 
over and stego image,respe
tively. The higher the value, the better the feature when used alone fordete
ting the LSB mat
hing algorithm. Figure 1 shows the values estimatedfrom 
over and stego images obtained by embedding a full payload with LSBmat
hing. We 
an see that the most in�uential features are C
→
−2,2 and C

→
2,−2
orresponding to regions 
ontaining noisy pixels in a smooth area. Also, it isinteresting to see that regions having the same 
olor (su
h as saturated pixels)7 See http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz



represented by C
→
0,0, or pixels in smooth transitions represented by C

→
d,d, do not
onstitute a good single feature. This is most probably 
aused by their highvarian
e, whi
h makes features C

→
−2,2 and C

→
2,−2 more stable and more suitablefor steganalysis. Although not easy to visualize, similar results and interpretation
an be obtained from higher-order 
o-o

urren
e matri
es C

•
d1d2d3

.This analysis shows whi
h parts of the image model should be preserved.We stress again that this analysis was performed from the evaluation of a sin-gle feature and its dire
t appli
ation may lead to overtraining. As was alreadymentioned above, we 
onsider this analysis as a good guide to derive heuristi
sto build the embedding 
osts ρi.4 From Theory to Pra
ti
eIn this se
tion, all pie
es and ideas presented above are put together, in order togive life to a new steganographi
 algorithm 
alled HUGO (Highly Undete
tablesteGO). The individual steps of this algorithm are depi
ted in Figure 2.
Cover

Distortion

computation
Coding

Model

correction
Stego

High dimensional modelFig. 2: High-level diagram of HUGO.4.1 Evaluation settingThe s
heme was assessed using the BOWS2 image database, 
ontaining approx-imately 10800 images of �xed size 512×512. Thanks to the �xed size, all imageshave the same number of usable elements, whi
h means that we do not have totake the Square Root Law [27,28℄ into the a

ount. Prior to all experiments, theimages were divided into two sets of equal size, one used ex
lusively for training,the other ex
lusively for evaluation of the a

ura
y. The 
hosen a

ura
y mea-sure is the minimal average de
ision error under equal probability of 
over andstego images, de�ned as
PE = min

1

2

(

PFp + PFn

)

,where PFp and PFn stand for the probability of false alarm or false positive(dete
ting 
over as stego) and probability of missed dete
tion (false negative).To observe the e�e
t of over-�tting for a parti
ular feature set, we 
reate blindsteganalyzers employing four di�erent feature sets (�rst- and se
ond-order SPAM



features [10℄ with T = 4 and T = 3 respe
tively, WAM [9℄, and re
ently proposedCross Domain Features8 (CDF) [25℄).All steganalyzers were realized as soft-margin SVMs [29℄ with Gaussian ker-nel9, k(x, y) = exp(−γ ‖x− y‖
2
). The parameters γ and C were set to values 
or-responding to the least error estimated by �ve-fold 
ross-validation on the train-ing set on the grid (C, γ) ∈

{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−d− 3,−d + 3}
},where d is the logarithm at the base 2 of the number of features.Besides the SVM-based blind steganalyzers, we also use the Maximum MeanDis
repan
y [30℄ (MMD) to qui
kly 
ompare the se
urity of di�erent versions ofthe algorithm.4.2 Co-o

urren
e model in steganographySe
tion 3.2 motivated the use of 
o-o

urren
e matri
es (SPAM features) as areliable model for steganography and explained, why the distortion fun
tion D(not just 
onstants ρi) is derived dire
tly from them. In order to stress thoseparts of the 
o-o

urren
e matri
es that are more important for steganalysis,the distortion fun
tion D is de�ned as a weighted sum of di�eren
es

D(X,Y) =

T
∑

d1,d2,d3=−T



w(d1, d2, d3)

∣

∣

∣

∣

∣

∣

∑

k∈{→,←,↑,↓}

C
X,k
d1d2d3

−C
Y,k
d1d2d3

∣

∣

∣

∣

∣

∣

+

+w(d1, d2, d3)

∣

∣

∣

∣

∣

∣

∑

k∈{ց,տ,ւ,ր}

C
X,k
d1,d2,d3

−C
Y,k
d1,d2,d3

∣

∣

∣

∣

∣

∣



 , (10)where w(d1, d2, d3) is a weight fun
tion quantifying the dete
tability of the
hange in the 
o-o

urren
e matrix10. The weight fun
tion w(d1, d2, d3) has thefollowing simple form
w(d1, d2, d3) =

1
[

√

d2
1 + d2

2 + d2
3 + σ

]γ , (11)where σ, γ > 0 are parameters that 
an be tuned in order to minimize the de-te
tability. This very 
onservative 
hoi
e mimi
s the average number of samplesavailable to Eve to estimate the individual features C
•
d1d2d3

from a single im-age (see the right part of Figure 1). Motivated by the analysis performed inSe
tion 3.3, the rationale of this 
hoi
e is simple: the more samples Eve has,the better estimate of individual feature she 
an obtain and the more she 
an8 CDF 
ombines se
ond-order SPAM features (T = 3) and 
artesian 
alibrated fea-tures proposed originally for DCT domain. To extra
t the DCT domain features, we
ompressed the image with quality fa
tor 100.9 We did some experiments with linear SVMs and never obtained better results. Fora dis
ussion related to linear SVMs, see [10℄.10 If the w(d1, d2, d3) = 1 for all di and T = 255, then all ρi would be the same andthe whole s
heme would just minimize the number of embedding 
hanges.



HUGO embedding algorithm1 for (i,j) in PIXELS { //fun
tion D is taken from (10) I2 Yp = X; Yp(i,j)++; rho_p(i,j) = D(X,Yp); //
al
ulate emb. impa
t3 Ym = X; Ym(i,j)--; rho_m(i,j) = D(X,Ym); //for ea
h pixel4 }5 rho_min = min(rho_p, rho_m); //elementwise; use minimum for embedding6 PIXELS_TO_CHANGE = minimize_emb_impa
t(LSB(X), rho_min, message)7 Y = X; //start making 
hanges in 
over image8 for (i,j) in PIXELS_TO_CHANGE { //order given by the MC visit. strategy9 if ( model_
orre
tion_step_enabled ) {10 Yp = Y; Yp(i,j)++; dp = D(X,Yp); Ym = Y; Ym(i,j)--; dm = D(X,Ym);11 if ( dp<dm ) { Y(i,j)++; } else { Y(i,j)--; }12 } else {13 if ( rho_p(i,j)<rho_m(i,j) ) { Y(i,j)++; } else { Y(i,j)--; }14 }15 }Fig. 3: Pseudo-
ode of the HUGO embedding algorithm as des
ribed in Se
tion 4.3.utilize it for steganalysis. By penalizing highly-populated features (in this 
asefeatures extra
ted from pixels with low di�eren
es d1, d2, and d3), we drive thealgorithm to hide the message into parts of the image di�
ult for Eve to model.In pra
ti
e, our 
hoi
e of w(d1, d2, d3) 
orrelates the distribution of the messagebits with the lo
al texture of the image.Note that the distortion measure (10) is not additive in the sense of (1). Thisis a signi�
ant deviation from the assumptions of Theorem 1, be
ause for thismore general 
ase near-optimal pra
ti
al algorithms for minimizing su
h embed-ding impa
t do not exist yet. To make this measure additive, we approximatethe 
osts of embedding 
hange as
ρi,j = D(X,Yi,j), (12)where Y

i,j is the stego image obtained by 
hanging the (i, j)th pixel of 
overimage X. As will be seen later, this approximation has a 
ru
ial impa
t on thedete
tability of the s
heme.4.3 Implementation details of HUGOFigure 3 shows the pseudo-
ode of our implementation. On lines 1�5, thealgorithm 
al
ulates distortions 
orresponding to modifying ea
h pixel by ±1and sets the embedding 
ost of pixel 
hange (ρi,j) to the minimum of these twonumbers (for saturated pixels, there is only one 
hoi
e).On
e the positions of pixel 
hanges are determined (either by simulating theembedding by virtue of Theorem 1, or by using a pra
ti
al algorithm, su
h asthe syndrome-trellis 
odes [20℄, (fun
tion minimize_emb_impa
t on line 6 of the
ode)), there are two ways to ensure that the pixel's LSB 
ommuni
ates themessage.



Without model 
orre
tion: This version assumes that the assumption ofthe Theorem 1 holds, whi
h means that we 
annot do any better than 
hangepixels to values determined in lines 1�5 (line 13 of the pseudo-
ode). The orderin whi
h the pixels are 
hanged does not matter.With model 
orre
tion (MC): Sin
e our distortion measure D (10) doesnot satisfy the assumptions of Theorem 1, we 
an further de
rease the distortionby 
hanging pixels to values (remember that there are two ways to mat
h pixels'LSB to the desired bit) minimizing the overall distortion D(X,Yi), where Y
idenotes the 
over image X after 
hanging the ith pixel (see lines 10�11 in thepseudo-
ode). As will be seen in the experimental part below, the impa
t ofmodel 
orre
tion on the se
urity is signi�
ant. In this 
ase of model 
orre
tion,the order in whi
h the pixels requiring 
hange of LSB are pro
essed is important.In the next subse
tion, we experimentally evaluate the following strategies: (S1)top left to bottom right, (S2) from highest ρi,j to lowest ρi,j , (S3) from lowest

ρi,j to highest ρi,j , (S4) random order.Finally we note that our implementation of HUGO in C++ with T = 90,the model 
orre
tion step, and pra
ti
al Syndrome-Trellis Code (STC) embedsmessage with relative length 0.25bpp to image of size 512×512 in approximately5s on Intel Core 2 Duo 2.8 GHz pro
essor. We 
onsider this time more than suit-able for real appli
ations. In pra
ti
e, the algorithm may need to 
ommuni
ate asmall number of parameters in order to be able to de
ode the message 
orre
tly.In HUGO, we need to 
ommuni
ate the size of the message in order to 
onstru
tthe same STC 
ode at the re
eiver side. This is usually done by reserving asmall portion of the image based on the stego key, where a known 
ode is usedfor embedding.4.4 HUGO's maturingThe HUGO algorithm has several parameters: the range of modeled di�eren
es
T, the parameters of the weight fun
tion γ and σ, and utilization of the model
orre
tion step. All these parameters need to be set before the a
tual use ofthe algorithm. Sin
e we are not aware of any general guidan
e, we set themexperimentally while 
omparing di�erent versions of the algorithm by blind ste-ganalysis. Although it 
an be argued that the parameters will be tied to thedatabase, we prefer to see this step as tuning the algorithm to image sour
e usedby Ali
e and Bob.The parameter setting pro
eeds as follows: (a) set the parameter T, (b) �ndsuitable values of σ and γ in (11), (
) set the the strategy of pixel visits. Inall experiments aimed to tune HUGO, the 
oding was simulated by virtue ofTheorem 1.The parameter T was set to T = 90 (the model has more then 107 features),
ausing more than 99% of the 
o-o

urren
es in the typi
al image to be 
overedby the model. By this 
hoi
e of T , we strongly believe that the dete
tabilityof HUGO by SPAM features 
annot be improved by in
reasing the range ofmodeled di�eren
es. In fa
t, our experiments showed that the in
rease of the
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(b) WAMFig. 4: Value of MMD (lower is better) plotted against parameters γ and σ for HUGOwith model 
orre
tion and S1 visiting strategy. Results for other features and evenwhen MC step was not used were similar and are omitted due to spa
e 
onstraints.range of modeled di�eren
es was not followed by a de
rease of the 
lassi�er error(most probably due to the 
urse of dimensionality).The sear
h for suitable parameters of the weight fun
tion (11) was performedon a grid (σ, γ) ∈
{

(10k, 2j)|k ∈ {−3, . . . , 1}, j ∈ {−1, 2}
} for both versions ofthe algorithm (with and without MC). The embedding payload was �xed to

0.25bpp. In order to redu
e the 
omplexity of the sear
h, the dete
tability wasevaluated by means of the Maximum Mean Dis
repan
y [30℄. Figure 4 showsthe MMD values for HUGO with the MC step and S1 visiting strategy. Due tospa
e 
onstraints, we report graphs only for SPAM and WAM features with MCstep S1. All other graphs even for the 
ase of Hugo without MC step were ofsimilar shape suggesting the 
hoi
e parameters γ and σ to be reasonable. For allexperiments presented in the rest of this se
tion, we 
hose γ = 4 and σ = 10.As we have already mentioned, the e�e
t of the model 
orre
tion on these
urity is substantial. For �xed 
lassi�
ation error PE = 40% of an SVM-basedsteganalyzer utilizing se
ond-order SPAM features, HUGOwith model 
orre
tionstep in
reases the se
ure payload from 0.25bpp to 0.4bpp. This di�eren
e isentirely due to the fa
t that our distortion measure is not additive. Sin
e we donot know yet how to do optimal 
oding for non-additive measures, the model
orre
tion step is in this 
ase a reasonably good remedy.Finally, we have 
ompared the strategies of pixel visits S1�S4 in the model
orre
tion step by training SVM-based steganalyzer utilizing se
ond order SPAMfeatures. From Figure 5 (a), strategy S2 seems to be the most se
ure wrt theSPAM features. Model 
orre
tion strategies S3 and S4 were performing slightlyworse than S2 and are not displayed. These results show that the model 
or-re
tion step should perform embedding 
hanges from pixels 
ausing the largestdistortion to pixels 
ausing the least distortion.
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Fig. 5: (a) Comparison of se
urity of di�erent versions of HUGO by means of error PEof steganalyzers utilizing se
ond-order SPAM features with T = 3. (b) Comparisonof di�erent steganalyti
 features for dete
ting ordinary LSB mat
hing with optimalternary 
oding and HUGO with MC step S2. All steganalyzers are targeted to a givenalgorithm and message length.4.5 HUGO's se
urityFigure 5 (a) 
ompares the se
urity of HUGO with simulated optimal 
odingutilizing di�erent model 
orre
tion strategies. For S2, whi
h seems to be thebest, we also report its pra
ti
al implementation using syndrome-trellis 
odewith 
onstraint height h = 10 (STC) [20℄. All algorithms are 
ompared to or-dinary LSB mat
hing with optimal (simulated) ternary matrix embedding. Thereported quantity PE is the error of SVM-based steganalyzers. We did not 
om-pared HUGO to adaptive ternary LSB mat
hing [9℄, or to MPSteg [31℄, be
ausethe reported improvement in the se
urity of both s
hemes over standard LSBmat
hing were not signi�
ant.The impa
t of swit
hing from the optimal (simulated) 
oding to the STC
oder (STC) on the dete
tability of HUGO is also interesting and interpretable.Ideally, we would like to have 
ode whi
h would 
hange ea
h pixel with proba-bility (2). To 
ompare the e�e
t of a pra
ti
al 
oder for �xed distortion d, weevaluate the 
oding loss l(d) = (αOPT − αACT)/αOPT, where αOPT is the pay-load embedded by the optimal 
oder and αACT is the payload embedded by apra
ti
al algorithm while both of them a
hieve the same distortion d. Codingloss 0 ≤ l(d) ≤ 1 tells us what portion of the ideal payload we are loosing dueto pra
ti
al embedding algorithm. For STCs, l(d) was often around 3% − 7%depending on ρ and h. This �nding is 
onsistent with Figure 5 (a).A

ording to Figure 5 (b), HUGO o�ers very high se
urity. Even for payloadsas large as 0.30bpp, the error of all four steganalyzers targeted to dete
t HUGOwith optimal 
oding andMC step is above 40%. It is expe
ted that se
ure payload



may be higher for 
over sour
es without su
h strong pixel dependen
ies as presentin BOWS2 database from s
aling the original images.Even though the improvement obtained from CDF features is signi�
antwhen 
ompared to se
ond-order SPAM, the relative payload for whi
h the s
hemeremains undete
table stays essentialy the same. This threshold may point toamount of pixels that are not modeled by either feature set (SPAM or DCTbased). However, in
luding su
h pixels in the steganalyti
 model may not beas bene�
ial as in
luding them into steganographi
 model due to the statisti
allearning problem. Su
h pixels are expe
ted to be part of very noisy end texturedareas whi
h will be 
hallenging for steganalysis.Last, but not least, if we 
ompare HUGO with MC step S2 to the state-of-the-art LSB mat
hing with optimal ternary 
oding, we 
an see that by usingHUGO, Ali
e gains more than 700% of the 
apa
ity at PE = 40% on the BOWS2database.5 Con
lusionThis paper presented a 
omplete method for designing pra
ti
al and se
uresteganographi
 s
hemes for real digital media. The main design prin
iple is tominimize a suitably-de�ned distortion 
aused by the embedding. Sin
e the dis-tortion fun
tion is an essential input of the method, a large part of the paper wasdevoted to its design. We re
ommended to use weighted di�eren
e of extendedstate-of-the-art feature ve
tors already used in steganalysis. The extension ofthe feature sets, whi
h 
an 
ontain even 107 features, is important to avoidover�tting to a parti
ular steganalyzer. The use of su
h large feature sets wasjusti�ed by explaining the fundamental di�eren
e of their role in steganographyand steganalysis.The whole approa
h was demonstrated by designing a new steganographi
algorithm for spatial domain (
alled HUGO), where the image model was de-rived from SPAM features. Parts of the model, i.e., the weights, responsible fordete
tion of LSB mat
hing were identi�ed using 
riteria optimized in FisherLinear Dis
riminant, whi
h motivated the 
onstru
tion of an ad ho
 distortionmeasure. The 
oding itself was performed using the syndrome-trellis 
odes whi
henable very fast implementation of the s
heme in pra
ti
e for arbitrary set ofembedding 
osts ρ.The se
urity of HUGO was veri�ed and 
ompared to prior art (LSB mat
h-ing) on a wide range of payloads for four di�erent features sets. In 
ontrast withLSB mat
hing, HUGO allows the embedder to hide 7× longer message withthe same level of se
urity level. By 
on
rete numbers, the payload of HUGO atdete
tion error 40% is 0.3bpp, while for LSB mat
hing it is 0.04bpp.6 A
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