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ABSTRACT

Nowadays, convolutional neural network (CNN) is appied to
different types of image classification tasks and outperforms
almost all traditional methods. However, one may find it
difficult to apply CNN to JPEG steganalysis because of the
extremely low SNR (embedding messages to image contents)
in the task. In this paper, a selection-channel-aware CNN
for JPEG steganalysis is proposed by incorporating domain
knowledge. Specifically, instead of random strategy, kernels of
the first convolutional layer are initialized with hand-crafted
filters to suppress the image content. Then, truncated linear
unit (TLU), a heuristically-designed activation function, is
adopted in the first layer as the activation function to better
adapt to the distribution of feature maps. Finally, we use a
generalized residual learning block to incorporate the knowl-
edge of selection channel in the proposed CNN to further
boost its performance. J-UNIWARD, a state-of-the-art JPEG
steganographic scheme, is used to evaluate the performance of
the proposed CNN and other competing JPEG steganalysis
methods. Experiment results show that the proposed CNN
steganalyzer outperforms other feature-based methods and
rivals the state-of-the-art CNN-based methods with much
reduced model complexity, at different payloads.

CCS CONCEPTS

• Security and privacy → Authentication; • Computing
methodologies → Machine learning .
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1 INTRODUCTION

Existing schemes of JPEG steganography tend to embed
secret messages in DCT domain by modifying quantized
DCT coefficients. To ensure the security of steganography,
the state-of-the-art methods adopt content-adaptive property
by defining the distortion function to evaluate embedding
cost of quantized DCT coefficients. That is, the modification
in complex regions which are difficult to model is assigned to
a low embedding cost or high embedding probability, and vice
versa. In DCT domain, UED [7], UERD [8] and J-UNIWARD
[13] exhibit good security performance. And J-UNIWARD is
the superior one among them.

On the other hand, steganalysis focuses on detecting the
existence of secret messages embedded by a specific or any
steganographic scheme in an object. Basically, a univer-
sal feature-based image steganalysis method includes three
stages. Firstly, extract noise residuals of the given image
with diverse well-designed models. Secondly, construct high-
dimensional features based on the noise residuals. Thirdly,
conduct a binary classification with an ensemble classifier
[15], which takes the high-dimensional features as input. For
example, SRM [6] and its variants [11] in spatial domain,
DCTR [12] and GFR [17] in DCT domain, all adopt such
framework and achieve outstanding performance. By incor-
porating the knowledge of selection channel, one can further
improve the performance of above methods [3–5].

In recent years, applications of convolutional neural net-
work (CNN) have achieved great success, especially in the
tasks of computer vision. For steganalysis of spatial images,
our previously proposed YeNet [20] is the first CNN that
outperforms significantly the best hand-crafted feature set-
s, e.g., SRM [6], in detection performance. When it comes
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to the JPEG steganalysis, although the statistics of JPEG
stego images might be well maintained in DCT domain,
the associated statistical artifacts in spatial domain (decom-
pressed JPEG images) would be somehow magnified due to
the relatively large quantization step size. Keep this in mind,
the CNN-based steganalyzer should take the decompressed
JPEG images (in spatial domain) as input. In other words,
the YeNet could be generalized to JPEG steganalysis with
modifications in some key nodes.

In this paper, we propose a selection-channel-aware CN-
N by generalizing YeNet to DCT domain with several key
modifications for JPEG steganalysis. To tackle the issue of
low SNR in the task of JPEG steganalysis, domain knowl-
edge is introduced into the proposed CNN in different ways.
Firstly, recognize that the first convolutional layer plays the
role of residual extractor, kernels of this layer are initialized
with 30 basic high-pass filters in SRM [6] to improve the
SNR. Secondly, TLU (Truncated Linear Unit) proposed in
[20] is adopted as the activation function of the first layer
instead of ReLU or TanH, where a universal threshold 𝑇 is
selected to better adapt to the distribution of the residual
maps. Finally, we further boost the performance of the pro-
posed CNN-based JPEG steganalyzer by taking advantage
of the knowledge of selection channel through an elaborately-
designed learning structure. Experiments are carried out to
evaluate the performance of the proposed CNN at different
payloads, which demonstrates that the proposed CNN-based
JPEG steganalyzer outperforms the best hand-crafted feature
sets, e.g., GFR, by a clear margin, and rivals the state-of-the-
art CNN-based methods, e.g. SRNet and SCA-SRNet, with
much reduced model complexity.

The rest of this paper is organized as follows. We provide
an overview of the proposed CNN architecture and elaborate
the details in Section 2. Experiment results and analysis are
given in Section 3. We summarize this paper in Section 4.

2 THE PROPOSED CNN

2.1 Overview

The proposed CNN architecture is illustrated in Fig. 1, which
includes two stages. The first stage preprocesses the JPEG
image and its selection channel. Feature maps extracted from
corresponding branch are known as residual measure and
residual distortion measure, which are merged with a simple
elementwise summation and activated by ReLU. The two
integrated signal channels are then fed into the subsequent
deep CNN for feature extraction and classification, which
will be discussed later in the following subsections.

The second stage is a deep CNN. The CNN first performs
a normal convolution, which is then followed by six cascaded
residual building blocks proposed in [10] as shown in Fig.
2. In these blocks, we avoid using 1× 1 convolution with a
specific stride to reduce the size of feature maps, for it may
cause potential performance degradation. Instead, we propose
to use 3×3 convolution with stride 2 or 3, or average pooling
followed by 1× 1 convolution with stride 1. Then, all feature
maps are fed into a global average pooling layer to generate a

Figure 1: The proposed CNN architecture. Layer
types and configurations are inside the boxes. Di-
mensions of kernels follow: (height × width) × input
× output.

feature vector of the given image. A fully-connected layer and
softmax function map the vector to classification probability.

Note that we call the proposed CNN with the knowledge
of selection channel as SCA-CNN, while it degenerates into
a Plain-CNN when the knowledge of selection channel is not
available.

2.2 The Preprocessing Layer

Domain knowledge is introduced into the proposed CNN
by the heuristically-designed architecture, especially the cus-
tomized setting of the first convolutional layer for steganalysis.
We elaborate details in this subsection.

2.2.1 Initialization. Given a JPEG image with size of 𝑀 ×𝑁

(both 𝑀 , 𝑁 are multiples of 8), let c =
(︁
𝑐
(𝑚,𝑛)
𝑘𝑙

)︁
be the

matrix of quantized DCT coefficients, where 𝑐
(𝑚,𝑛)
𝑘𝑙 is the

(𝑘, 𝑙)th element of the (𝑚,𝑛)th 8×8 block, and 1 ≤ 𝑚 ≤ 𝑀/8,
1 ≤ 𝑛 ≤ 𝑁/8, 0 ≤ 𝑘, 𝑙 ≤ 7. The (𝑖, 𝑗)th element of the (𝑘, 𝑙)th
DCT basis, 0 ≤ 𝑖, 𝑗 ≤ 7, is computed as

𝑓
(𝑘,𝑙)
𝑖𝑗 =

𝜔𝑘𝜔𝑙

4
cos

𝜋𝑘(2𝑖+ 1)

16
cos

𝜋𝑙(2𝑗 + 1)

16
, (1)

where 𝜔0 = 1/
√
2 and 𝜔𝑘 = 1 for 𝑘 > 0. Then one can

decompress the JPEG image and obtain non-rounded pixel
values with

𝑥
(𝑚,𝑛)
𝑖𝑗 =

7∑︁
𝑘,𝑙=0

𝑓
(𝑘,𝑙)
𝑖𝑗 𝑞𝑘𝑙𝑐

(𝑚,𝑛)
𝑘𝑙 , (2)

where 𝑥
(𝑚,𝑛)
𝑖𝑗 is the (𝑖, 𝑗)th pixel value in the (𝑚,𝑛)th 8× 8

block of the decompressed image x, and 𝑞𝑘𝑙 is the element
of corresponding JPEG luminance quantization matrix. As

shown in Fig. 1, Plain-CNN takes x =
(︁
𝑥
(𝑚,𝑛)
𝑖𝑗

)︁
as input.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Building blocks used in the proposed CNN.
(a)-(f) are block 1-6 respectively. Layer types and
configurations are inside the boxes. Dimensions of
kernels follow: (height × width) × input × output.

Similar to many existing CNN-based JPEG steganalysis
methods, the first convolutional layer of the proposed CNN
is expected to act as a residual extractor, which suppresses
image content and improves the SNR for steganalysis. For
the initialization of kernels in the first layer, a CNN with
low model complexity usually fails to learn a good residual
extractor on a relatively small dataset if initialized with
random numbers. Thus, we propose to initialize the kernels
with hand-crafted filters which leads to a much better starting
point of training stage. Besides, inspired by the residual
computation in feature-based methods, high-pass filter bank,
such as basic linear filters in SRM [6], DCT bases in DCTR
[12] and Gabor filters in GFR [17], may all serve as the good
choice to initialize the parameters. Therefore, to reduce the
model complexity of the proposed CNN, 30 basic linear filters
in SRM (the “spam” filters and their symmetrical version),

Table 1: Classification Accuracy of Plain-CNN with
Different Values of 𝑇 at 0.4 bpnzAC for QF=75

Threshold 15 31 63

Accuracy 0.9227 0.9292 0.9252

are adopted to initialize the kernels of the first layer. Because
kernel size of the first layer is set to be 5× 5 as shown in Fig.
1, zero-padding is first applied to filters to attain the equal
size. Note that kernels of the first convolutional layer could
be further updated during the training stage of the proposed
CNN.

2.2.2 Activation Function. As verified by extensive experi-
mental results in [20], TLU (truncated linear unit) is a better
activation function that adapts to the distribution of noise
residuals in steganalysis, where the threshold 𝑇 is the on-
ly hyper-parameter of TLU to be determined. For JPEG
steganalysis, however, the residual distributions in spatial
domain corresponding to the embedding changes in DCT do-
main should be evaluated to determine 𝑇 , which is relevant
to the QFs and embedding rates in a way, but it is not dis-
tinctive. Therefore, in our work, we suggest selecting a fixed
𝑇 according to the performance of Plain-CNN, as shown in
Table 1. Because the CNN trained at 0.4 bpnzAC for QF=75
is the prime network to seed others in Section 3.2, we select
𝑇 according to its detection performance. It is shown that
most of the key artifacts due to the embedding changes in
DCT domain is preserved in the case of 𝑇 = 31, resulting in
the best classification accuracy among all candidate values.
Therefore, we set the threshold of TLU to be 31. Considering
the tradeoff between performance and computation speed,
TLU is only adopted in the first layer as in [20].

2.3 Incorporate Selection Channel

2.3.1 Residual Distortion Measure. When the steganalyzer
is exactly aware of the scheme associated with the JPEG
steganography, the selection channel 𝛽, or the embedding
change probabilities of the quantized DCT coefficients c, can
be computed according to the steganographic algorithm. To
incorporate the knowledge of selection channel, [5] proposed

to use the upper bound t(𝛽) =
(︁
𝑡
(𝑚,𝑛)
𝑖𝑗

)︁
of 𝐿1 embedding

distortion to characterize the knowledge of selection channel
for JPEG steganography (residual distortion measure), which
is computed as

𝑡
(𝑚,𝑛)
𝑖𝑗 =

7∑︁
𝑘,𝑙=0

⃒⃒⃒
𝑓
(𝑘,𝑙)
𝑖𝑗

⃒⃒⃒
𝑞𝑘𝑙𝛽

(𝑚,𝑛)
𝑘𝑙 . (3)

A computationally efficient residual distortion measure is
also given in [5]:

𝛿
1/2
𝑢𝑆𝐴(𝛽) =

√︀
t(𝛽) * |g|, (4)

where g is a filter in the high-pass filter bank. By incorporat-

ing 𝛿
1/2
𝑢𝑆𝐴(𝛽) into some feature-based methods, these methods

become selection-channel-aware and outperform their prior
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arts. For the proposed CNN-based JPEG steganalyzer, the
high-pass filter bank is the basic linear filters in SRM.

2.3.2 Design of SCA-CNN. Given a JPEG image, we decom-
press quantized DCT coefficients c to obtain non-rounded
pixel values x according to (2) and compute t(𝛽) according
to (3), where 𝛽 is selection channel. For SCA-CNN, x and
t(𝛽) are two different signals from the same image. The key
issue to design SCA-CNN is how to incorporate t(𝛽) into
Plain-CNN.

If we follow the scheme proposed in [20] to incorporate t(𝛽),
the first stage of the proposed CNN should be as illustrated
in Fig. 3a. Input t(𝛽) is convolved by |g|, the absolute value
of the kernels shared by the preprocessing layer, then output
feature maps are activated by a square root function to obtain

𝛿
1/2
𝑢𝑆𝐴(𝛽) according to (4). In this case, only parameters in left
branch (x) are learnable. Then the two signal channels, i.e.,

truncated residual maps and 𝛿
1/2
𝑢𝑆𝐴(𝛽), are simply integrated

by an elementwise summation.
For the proposed SCA-CNN, we make the two signal chan-

nels learnable, as shown in Fig. 3b, for the following reasons.
Firstly, |g| do not participate in back propagation explicitly

in [20]. Secondly, 𝛿
1/2
𝑢𝑆𝐴(𝛽) may be a too specific formula of

residual distortion measure to incorporate into a CNN. These
two issues may prelimit to some extent the solution space of
residual distortion measure. Obviously, it is wise to design a
architecture to learn a suitable residual distortion measure.
Therefore, in Fig. 3b, x and t(𝛽) are first fed into the CNN,
then they are convolved by three layers respectively. The left
branch aims to extract feature maps for residual measure,
while the right branch is expected to extract feature maps for
residual distortion measure. As elaborated in Section 2.2.1
and 2.2.2, the preprocessing layer is initialized with 30 filters
in SRM, followed by TLU activation. In addition, the first
layer in the right branch (selection channel) is initialized
with the absolute value of 30 filters in SRM, and no activa-
tion function is applied. All parameters in both branches are
learnable when training the CNN in order to extract discrim-
inate feature maps to merge, especially the learnable residual
distortion measure. Elementwise summation is adopted to
integrate two signal channels, and then followed by ReLU
activation. In fact, our scheme to incorporate the knowledge
of selection channel is expected to behave as a generalized
residual learning block of ResNet illustrated in Fig. 4.

Compared with YeNet, the first stage of our scheme in-
cludes more parameters, which results in more discriminate
feature maps of x and t(𝛽). Besides, such architecture makes
residual distortion measure learnable, which is expected to
further boost performance of the proposed CNN.

2.4 Strategy for Low Payload and High
QF Steganalysis

When the payload gets lower, it is difficult for CNNs to
converge to a good local optimum from scratch. In [20], the
performance gain between YeNet and SCA-YeNet gets smaller
when the payload gets higher. Such phenomenon implies that

(a) (b)

Figure 3: Different schemes to incorporate the knowl-
edge of selection channel into the proposed CNN. (a)
Scheme that follows [20]. (b) Our scheme.

Figure 4: The first stage of the proposed SCA-CNN
is designed to behave as a generalized residual learn-
ing block of ResNet.

CNN takes advantage of the knowledge of selection channel
better if it is trained on the training set generated at a higher
payload, because the content-adaptive property of almost all
steganographic schemes gets weaker in this case. Therefore,
curriculum learning [1] or transfer learning strategy [16] is
suitable for the case of low payload steganalysis. In practice,
one can train the proposed CNN from scratch at a high
payload, e.g. 0.4 bpnzAC, and save the best model according
to the performance on validation set. Then the saved model
is fine-tuned in the case of low payload, e.g. 0.3 bpnzAC,
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and further fine-tuned in other harder cases, such as lower
payloads and higher QFs. According to our experiments, such
scheme for low payload steganalysis is time-saving.

3 EXPERIMENT RESULTS

3.1 Experiment Setup

Experiments were carried out to evaluate the performance of
the proposed CNN-based JPEG steganalyzer. The whole
dataset comes from two image sources, BOSSbase v1.01
and BOWS2. All involved images are resized to the ones
of 256× 256. The dataset setup is exactly same as [2]. That
is, the training set contains 14,000 cover-stego pairs (4,000
from BOSSbase and 10,000 from BOWS2). The validation
set containing 1,000 cover-stego pairs is utilized to select
hyper-parameters, and final testing results are reported af-
ter classification of 5,000 cover-stego pairs in test set. The
performance of the proposed CNN is evaluated at payload
which ranges from 0.1 to 0.5 bpnzAC for quality factors 75
and 95. On the other hand, it is unnecessary to prepare a
validation set for feature-based methods. Thus, the training
set for feature-based methods is the union set of training set
and validation set for CNN, and the performance will be still
evaluated on the same test set.

We implemented the proposed CNN based on Tensorpack
[18] and trained it with Adamax [14] method. As stated in
Section 2.3.2, kernels of the first layer to convolve x are
initialized with high-pass filters in SRM, and the bias term
of this layer is initialized to 0. Kernels to convolve t(𝛽) are
initialized with the absolute value of corresponding filters.
Batch normalization is applied to all convolutional layers
except these two layers. Other convolutional layers are all
initialized using [9]. Note that “SAME” padding is applied
to all convolutional layers of the proposed CNN. Weights
of the fully-connected layer are initialized from Gaussian
distribution with zero mean and 0.01 standard deviation, and
the bias term is initialized to 0. All weights in the proposed
CNN except the first stage are regularized with 𝐿2 norm.
Cross-entropy and the regularization term whose weight decay
is 5 × 10−4 is adopted as loss function to minimize during
training stage. During training stage, a mini-batch contains 16
cover-stego pairs, and data augmentation (mirroring, rotation
or the combination of both) is randomly applied to each
cover-stego pair before a training iteration. Note that the
raw non-rounded pixels x is fed into the CNN without any
pre-processing. When the proposed CNN is trained from
scratch at 0.4 bpnzAC for QF=75, the learning rate is set
to 0.002 first and divided by 10 after the 130th and 230th
epoch. When it is fine-tuned in other cases, the learning rate
is set to 0.001 initially and divided by 10 after the 50th and
80th epoch. We conducted all of the following experiments
on an NVIDIA GeForce GTX TITAN X GPU card.

3.2 Comparison with Other
State-of-the-Art Methods

Expressed as classification accuracy, the performance of the
proposed CNN as well as other state-of-the-art steganalysis

methods is shown in Table 2 at payload which ranges from
0.1 to 0.5 bpnzAC in the case of QF=75. It is observed that
both Plain-CNN and SCA-CNN outperform GFR and its
selection-channel-aware version, the best hand-crafted feature
set for JPEG steganalysis, by a clear margin. Compared with
SCA-GFR, Plain-CNN improves the accuracy by 10.11% at
0.4 bpnzAC and 12.82% at 0.2 bpnzAC, respectively. For
CNN-based JPEG steganalyzer, we compare the performance
with the state-of-the-art schemes, i.e., XuNet [19] and the
recently emerged SRNet [2] and its selection-channel-aware
version SCA-SRNet, which are summarized in Table 2 below.
It is shown that our proposed Plain-CNN and SCA-CNN out-
perform the XuNet by a clear margin and have a comparable
performance with SRNet and SCA-SRNet. It is also observed
that the SCA-CNN outperforms consistently Plain-CNN for
tested payloads. In specific, the performance of SCA-CNN is
boosted by 1.31% at 0.4 bpnzAC and 3.67% at 0.2 bpnzAC
respectively, indicating that the SCA-CNN could better take
advantage of the knowledge of selection channel to achieve
better detection performance and makes it one of the best
CNN based methods at present. However, the performance
gains between SCA-CNN and Plain-CNN tends to decrease
as the embedding rate increases. This is because the adap-
tivity of the adopted steganographic scheme, J-UNIWARD,
declines for large embedding payload, which is also reported
in [20]. When the quality factor is increased to 95, all JPEG
steganalyzers suffer from performance degradation because it
is more difficult to detect embedding messages in higher qual-
ity factor. However, Plain-CNN and SCA-CNN still retain
the comparable performance with SRNet and SCA-SRNet.

3.3 Model Complexity

As the large-scale deployment of AI applications on thin
clients, e.g., mobile terminals, the CNNs with low model com-
plexity are becoming increasingly demanded. We compare
the model complexity of the proposed network with other
competing CNN-based schemes in terms of the number of
model parameters as shown in Table 3. It is noticed that,
although the proposed CNN models only show the compa-
rable performance with SRNet and SCA-SRNet, which are
the state-of-the-art CNN-based JPEG steganalyzers, they
indeed exhibit much lower model complexity, say, lower than
one order of magnitude. This is attributed to the customized
design of the network structure by incorporating the domain
knowledges, e.g., the initialization of the kernels with SRM in
first layer and the introduction of the heuristically-designed
activation function TLU. With the emergence of techniques
for neural network search, the model complexity of the pro-
posed networks is expected to be further reduced in the
future.

4 CONCLUSION

How to design a customized CNN for JPEG steganalysis still
remains a challenging topic because of the low SNR in the
task. To tackle this issue, a customized designed architec-
ture for JPEG steganalysis is proposed by incorporating the
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Table 2: Comparison with Other State-of-the-Art Methods in Terms of Classification Accuracy

Method
Payload (bpnzAC), QF=75 Payload (bpnzAC), QF=95

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

GFR 0.5489 0.6290 0.7140 0.7945 0.8623 0.5128 0.5430 0.5861 0.6390 0.7056
SCA-GFR 0.5811 0.6755 0.7554 0.8281 0.8846 0.5197 0.5527 0.5986 0.6522 0.7126
XuNet 0.5763 0.7011 0.8107 0.8839 0.9227 0.5136 0.5376 0.5919 0.6603 0.7578
SRNet 0.6799 0.8111 0.8847 0.9330 0.9615 0.5723 0.6560 0.7484 0.8238 0.8852
SCA-SRNet 0.7310 0.8374 0.9079 0.9422 0.9679 0.6288 0.6757 0.7654 0.8360 0.8904
Plain-CNN 0.6746 0.8037 0.8787 0.9292 0.9605 0.5708 0.6709 0.7530 0.8280 0.8808
SCA-CNN 0.7307 0.8404 0.9050 0.9423 0.9661 0.6381 0.6873 0.7734 0.8415 0.8875

Table 3: Model Complexity in Terms of the Number
of Model Parameters

Network Parameter Number

XuNet 5754k
SRNet 4779k
SCA-SRNet 4779k
Plain-CNN 234k
SCA-CNN 252k

domain knowledges of the task. Firstly, to set a good start
point for training CNN, kernels of the first convolutional
layer are initialized with the high-pass filter bank from S-
RM instead of random numbers. Secondly, to better adapt
to the distribution of feature maps, the activation function
TLU in our previous work is generalized to the application
of JPEG steganalysis with relevant modification. Thirdly, to
incorporate the knowledge of selection channel, a generalized
residual learning block is introduced into the proposed CNN
to further boost the performance. Experiments are carried
out to evaluate the proposed CNN model and other compet-
ing methods, which shows that our customized CNN-based
JPEG steganalyzer achieves the best performance compared
with other hand-crafted feature sets, and has the comparable
performance with the state-of-the-art CNN-based methods
with much reduced model complexity.
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