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Abstract—This paper proposes a complete practical method-
ology for minimizing additive distortion in steganography with
general (nonbinary) embedding operation. Let every possible
value of every stego element be assigned a scalar expressing the
distortion of an embedding change done by replacing the cover
element by this value. The total distortion is assumed to be a
sum of per-element distortions. Both the payload-limited sender
(minimizing the total distortion while embedding a fixed payload)
and the distortion-limited sender (maximizing the payload while
introducing a fixed total distortion) are considered. Without any
loss of performance, the nonbinary case is decomposed into sev-
eral binary cases by replacing individual bits in cover elements.
The binary case is approached using a novel syndrome-coding
scheme based on dual convolutional codes equipped with the
Viterbi algorithm. This fast and very versatile solution achieves
state-of-the-art results in steganographic applications while
having linear time and space complexity w.r.t. the number of
cover elements. We report extensive experimental results for a
large set of relative payloads and for different distortion profiles,
including the wet paper channel. Practical merit of this approach
is validated by constructing and testing adaptive embedding
schemes for digital images in raster and transform domains.
Most current coding schemes used in steganography (matrix
embedding, wet paper codes, etc.) and many new ones can be
implemented using this framework.

Index Terms—Coding loss, convolutional codes, embedding
impact, matrix embedding, steganography, trellis-coded quantiza-
tion, wet paper codes.

I. INTRODUCTION

T HERE exist two mainstream approaches to steganog-
raphy in empirical covers, such as digital media objects:

steganography designed to preserve a chosen cover model and
steganography minimizing a heuristically-defined embedding
distortion. The strong argument for the former strategy is that
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provable undetectability can be achieved w.r.t. a specific model.
The disadvantage is that an adversary can usually rather easily
identify statistical quantities that go beyond the chosen model
that allow reliable detection of embedding changes. The latter
strategy is more pragmatic—it abandons modeling the cover
source and instead tells the steganographer to embed payload
while minimizing a distortion function. In doing so, it gives
up any ambitions for perfect security. Although this may seem
as a costly sacrifice, it is not, as empirical covers have been
argued to be incognizable [1], which prevents model-preserving
approaches from being perfectly secure as well.
While we admit that the relationship between distortion and

steganographic security is far from clear, embedding while min-
imizing a distortion function is an easier problem than embed-
ding with a steganographic constraint (preserving the distribu-
tion of covers). It is also more flexible, allowing the results
obtained from experiments with blind steganalyzers to drive
the design of the distortion function. In fact, today’s least de-
tectable steganographic schemes for digital images [2]–[5] were
designed using this principle. Moreover, when the distortion is
defined as a norm between feature vectors extracted from cover
and stego objects, minimizing distortion becomes tightly con-
nected with model preservation insofar the features can be con-
sidered as a low-dimensional model of covers. This line of rea-
soning already appeared in [5] and [6] and was further devel-
oped in [7].
With the exception of [7], steganographers work with ad-

ditive distortion functions obtained as a sum of single-letter
distortions. A well-known example is matrix embedding where
the sender minimizes the total number of embedding changes.
Near-optimal coding schemes for this problem appeared in [8]
and [9], together with other clever constructions and extensions
[10]–[15]. When the single-letter distortions vary across the
cover elements, reflecting thus different costs of individual
embedding changes, current coding methods are highly subop-
timal [2], [4].
This paper provides a general methodology for embedding

while minimizing an arbitrary additive distortion function with
a performance near the theoretical bound. We present a com-
plete methodology for solving both the payload-limited and
the distortion-limited sender. The implementation described in
this paper uses standard signal processing tools—convolutional
codes with a trellis quantizer—and adapts them to our problem
by working with their dual representation. These codes, which
we call the syndrome-trellis codes (STCs), can directly im-
prove the security of many existing steganographic schemes,
allowing them to communicate larger payloads at the same
embedding distortion or to decrease the distortion for a given
payload. In addition, this work allows an iterative design of
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new embedding algorithms by making successive adjustments
to the distortion function to minimize detectability measured
using blind steganalyzers on real cover sources [4], [5], [16].
This paper is organized as follows. In the next section, we in-

troduce the central notion of a distortion function. The problem
of embedding while minimizing distortion is formulated in
Section III, where we introduce theoretical performance bounds
as well as quantities for evaluating the performance of practical
algorithms with respect to each other and the bounds. The
syndrome coding method for steganographic communication is
reviewed in Section IV. By pointing out the limitations of pre-
vious approaches, we motivate our contribution, which starts
in Section V, where we introduce a class of syndrome-trellis
codes for binary embedding operations. We describe the con-
struction and optimization of the codes and provide extensive
experimental results on different distortion profiles including
the wet paper channel. In Section VI, we show how to decom-
pose the problem of embedding using nonbinary embedding
operations to a series of binary problems using a multilayered
approach so that practical algorithms can be realized using
binary STCs. The application and merit of the proposed coding
construction is demonstrated experimentally in Section VII on
covers formed by digital images in raster and transform (JPEG)
domains. Both the binary and nonbinary versions of payload-
and distortion-limited senders are tested by blind steganalysis.
Finally, the paper is concluded in Section VIII.
This paper is a journal version of [17] and [18], where the

STCs and the multilayered construction were introduced. This
paper unifies these methods into a complete and self-contained
framework. Novel performance results and comparisons are in-
cluded.
All logarithms in this paper are at the base of 2. We use

the Iverson bracket defined to be 1 if the logical expres-
sion is true and zero otherwise. The binary entropy function

is expressed in bits. The
calligraphic font will be used solely for sets, random variables
will be typeset in capital letters, while their corresponding real-
izations will be in lower-case. Vectors will be always typeset in
boldface lower case, while we reserve the blackboard style for
matrices (e.g., is the th element of matrix ).

II. DISTORTION FUNCTION

For concreteness, and without loss of generality, we will call
image and its th pixel, even though other interpretations

are certainly possible. For example, may represent an RGB
triple in a color image, a quantized DCT coefficient in a JPEG
file, etc. Let be an -pixel
cover image with the pixel dynamic range . For example,

for 8-bit grayscale images.
The sender communicates a message to the receiver by in-

troducing modifications to the cover image and sending a stego
image , where

are such that . We call the embedding operation
binary if , or ternary if for every pixel . For
example, 1 embedding (sometimes called LSB matching) can
be represented by with appropriate
modifications at the boundary of the dynamic range.
The impact of embedding modifications will be measured

using a distortion function . The sender will strive to embed

payload while minimizing . In this paper, we limit ourselves
to an additive in the form1

(1)

where , are bounded
functions expressing the cost of replacing the cover pixel
with . Note that may arbitrarily depend on the entire cover
image , allowing thus the sender to incorporate inter-pixel de-
pendencies [5]. The fact that the value of is indepen-
dent of changes made at other pixels implies that the embedding
changes do not interact.
The boundedness of is not limiting the sender

in practice since the case when a particular value is for-
bidden (a requirement often found in practical steganographic
schemes [16]) can be resolved by excluding from . In
practice, the sets , , may depend on cover
pixels and thus may not be available to the receiver. To handle
this case, we expand the domain of to and define

whenever .
We intentionally keep the definition of the distortion func-

tion rather general. In particular, we do not require
for all to allow for the case when it is actually

beneficial to make an embedding change instead of leaving the
pixel unchanged. An example of this situation appears in [7].

III. PROBLEM FORMULATION

This section contains a formal definition of the problem of
embedding while minimizing a distortion function. We state the
performance bounds and define some numerical quantities that
will be used to compare coding methods w.r.t. each other and to
the bounds.
We assume the sender obtains her payload in the form of

a pseudo-random bit stream, such as by compressing or en-
crypting the original message. We further assume that the em-
bedding algorithm associates every cover image with a pair

, where is the set of all stego images into which can
be modified and is their probability distribution characterizing
the sender’s actions, . Since the choice of

depends on the cover image, all concepts derived from
these quantities necessarily depend on as well. We think of
as a constant parameter that is fixed in the very beginning and
thus we do not further denote the dependency on it explicitly.
For this reason, we simply write .
If the receiver knew , the sender could send up to

(2)

bits on average while introducing the average distortion

(3)

by choosing the stego image according to . By the
Gel’fand–Pinsker theorem [19], the knowledge of does
not give any fundamental advantage to the receiver and the

1The case of embedding with nonadditive distortion functions is addressed in
[7] by converting it to a sequence of embeddings with an additive distortion.
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same performance can be achieved as long as is known to
the sender. Indeed, none of the practical embedding algorithms
introduced in this paper requires the knowledge of or for
reading the message.
The task of embedding while minimizing distortion can as-

sume two forms:
• Payload-limited sender (PLS): embed a fixed average
payload of bits while minimizing the average distortion,

(4)

• Distortion-limited sender (DLS): maximize the average
payload while introducing a fixed average distortion ,

(5)

The problem of embedding a fixed-size message while mini-
mizing the total distortion (the PLS) is more commonly used
in steganography when compared to the DLS. When the dis-
tortion function is content-driven, the sender may choose to
maximize the payload with a constraint on the overall distor-
tion. This DLS corresponds to a more intuitive use of steganog-
raphy since images with different level of noise and texture can
carry different amount of hidden payload and thus the distortion
should be fixed instead of the payload (as long as the distortion
corresponds to statistical detectability). The fact that the pay-
load is driven by the image content is essentially a case of the
batch-steganography paradigm [20].

A. Performance Bounds and Comparison Metrics

Both embedding problems described above bear relationship
to the problem of source coding with a fidelity criterion as
described by Shannon [21] and the problem of source coding
with side information available at the transmitter, the so-called
Gel’fand–Pinsker problem [19]. Problems (4) and (5) are dual
to each other, meaning that the optimal distribution for the
first problem is, for some value of , also optimal for the
second one. Following the maximum entropy principle [22,
Th. 12.1.1], the optimal solution has the form of a Gibbs
distribution (see [8, App. A] for derivation):

(6)
where the parameter is obtained from the
corresponding constraints (4) or (5) by solving an alge-
braic equation2; ,

are the corresponding partition func-
tions. Step (a) follows from the additivity of , which also
leads to mutual independence of individual stego pixels
given .
By changing each pixel with probability (6) one can sim-

ulate embedding with optimal . This is important for steganog-
raphy developers who can test the security of a scheme that
uses the pair using blind steganalysis without having
to implement a practical embedding algorithm. The simulator
of optimal embedding can also be used to assess the increase
in statistical detectability of a practical (suboptimal) algorithm

2A simple binary search will do the job because both and are
monotone w.r.t. .

w.r.t. to the optimal one. This separation principle [7] simpli-
fies the search for better distortion measures since only the most
promising approaches can be implemented. In Section VII, we
use the simulators to benchmark different coding algorithms
we develop in this paper by comparing the security of practical
schemes using blind steganalysis.
An established way of evaluating coding algorithms in

steganography is to compare the embedding efficiency
(in bits per unit distortion) for a fixed

expected relative payload with the upper bound de-
rived from (6). When the number of changes is minimized, is
the average number of bits hidden per embedding change. For
general functions , the interpretation of this metric becomes
less clear. A different and more easily interpretable metric is to
compare the payload, , of an embedding algorithm w.r.t. the
payload, , of the optimal DLS for a fixed

(7)

which we call the coding loss.

B. Binary Embedding Operation

In this section, we show that for binary embedding opera-
tions, it is enough to consider a slightly narrower class of dis-
tortion functions without experiencing any loss of generality.
The binary case is very important as the embedding method in-
troduced in this paper is first developed for this special case and
then extended to nonbinary operations.
For binary embedding with , , we

define ,
, and rewrite (1) as

(8)

Because the first sum does not depend on , when minimizing
over it is enough to consider only the second term. It now

becomes clear that embedding in cover while minimizing (8)
is equivalent to embedding in cover

when
when

(9)

while minimizing

(10)

with nonnegative costs for
all (when the cover pixel is changed to , the distortion
always increases). Thus, from now on for binary embedding

operations, we will always consider distortion functions of the
form:

(11)

with .
For example, F5 [23] uses the distortion function (11) with

(the number of embedding changes), while nsF5 [16]
employs wet paper codes, where . In some embed-
ding algorithms [2], [4], [24], where the cover is preprocessed
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Fig. 1. Lower bound on the average per-pixel distortion, , as a func-
tion of relative payload for different distortion profiles.

and quantized before embedding, is proportional to the quan-
tization error at pixel .
Additionally, for binary embedding operations we speak of a

distortion profile if for all , where is a nonde-
creasing3 function . The following distortion
profiles are of interest in steganography (this is not an exhaus-
tive list): the constant profile, , when all pixels have
the same impact on detectability when changed; the linear pro-
file, , when the distortion is related to a quantization
error uniformly distributed on for some quantiza-
tion step ; and the square profile, , which can
be encountered when the distortion is related to a quantization
error that is not uniformly distributed.
In this paper, we normalize the profile so that

when embedding a full payload .
With this convention, Fig. 1 displays the lower bounds on the
average per-pixel distortion for three distortion profiles.
In practice, some cover pixels may require and

thus (the so-called wet pixels [16], [24], [25]) to pre-
vent the embedding algorithm frommodifying them. Since such
pixels are essentially constant, in this case we measure the rela-
tive payload with respect to the set of dry pixels ,
i.e., . The overall channel is called the
wet paper channel and it is characterized by the profile of dry
pixels and relative wetness . The wet
paper channel is often required when working with images in
the JPEG domain [16].

IV. SYNDROME CODING

The PLS and the DLS can be realized in practice using a
general methodology called syndrome coding. In this section,
we briefly review this approach and its history paving our way
to Section V and VI, where we explain the main contribution of
this paper—the syndrome-trellis codes.
Let us first assume a binary version of both embedding prob-

lems. Let be a parity function shared be-
tween the sender and the receiver satisfying

3By reindexing the pixels, we can indeed assume that
.

such as . The sender and the receiver need to
implement the embedding and extraction mappings defined as

and satisfying

respectively. In particular, we do not assume the knowledge of
the distortion function at the receiver and thus the embedding
scheme can be seen as being universal in this sense. A common
information-theoretic strategy for solving the PLS problem is
known as binning [26], which we implement using cosets of
a linear code. Such a construction, better known as syndrome
coding, is capacity achieving for the PLS problem if random
linear codes are used.
In syndrome coding, the embedding and extraction mappings

are realized using a binary linear code of length and dimen-
sion :

(12)

(13)

where , is a parity-
check matrix of the code , is
the coset corresponding to syndrome , and all operations are
in binary arithmetic.
Unfortunately, random linear codes are not practical due to

the exponential complexity of the optimal binary coset quantizer
(12), which is the most challenging part of the problem. In this
work, we describe a rich class of codes for which the quantizer
can be solved optimally with linear time and space complexity
w.r.t. .
Since the DLS is a dual problem to the PLS, it can be solved

by (12) and (13) once an appropriate message size is known.
This can be obtained in practice by , where

is themaximal average payload obtained from
the optimal distribution (6) achieving average distortion and
is an experimentally obtained coding loss we expect the algo-

rithm will achieve.
One possible approach for solving a nonbinary version of

both embedding problems is to increase the size of the alphabet
and use (12) and (13) with a nonbinary code , such as the
ternary Hamming code. A more practical alternative with
lower complexity is the multilayered construction proposed in
Section VI, which decomposes (12) and (13) into a series of
binary embedding subproblems. Such decomposition leads to
the optimal solution of PLS and DLS as long as each binary
subproblem is solved optimally. For this reason, in Section V
we focus on the binary PLS problem for a large variety of
relative payloads and different distortion profiles including the
wet paper channel.

A. Prior Art

The problem of minimizing the embedding impact in
steganography, introduced above as the PLS problem, has been
already conceptually described by Crandall [27] in his essay
posted on the steganography mailing list in 1998. He suggested
that whenever the encoder embeds at most one bit per pixel,
it should make use of the embedding impact defined for every
pixel and minimize its total sum:
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“Conceptually, the encoder examines an area of the
image and weights each of the options that allow it to
embed the desired bits in that area. It scores each option
for how conspicuous it is and chooses the option with the
best score.”

Later, Bierbrauer [28], [29] studied a special case of this
problem and described a connection between codes (not nec-
essarily linear) and the problem of minimizing the number of
changed pixels (the constant profile). This connection, which
has become known as matrix embedding (encoding), was
made famous among steganographers by Westfeld [23] who
incorporated it in his F5 algorithm. A binary Hamming code
was used to implement the syndrome-coding scheme for the
constant profile. Later on, different authors suggested other
linear codes, such as Golay [30], BCH [31], random codes
of small dimension [32], and nonlinear codes based on the
idea of a blockwise direct sum [29]. Current state-of-the-art
methods use codes based on low density generator matrices
(LDGMs) [8] in combination with the ZZW construction [15].
The embedding efficiency of these codes stays rather close to
the bound for arbitrarily small relative payloads [33].
The versatile syndrome-coding approach can also be used to

communicate via the wet paper channel using the so-called wet
paper codes [24]. Wet paper codes minimizing the number of
changed dry pixels were described in [13], [14], [31], and [34].
Even though other distortion profiles, such as the linear pro-

file, are of great interest to steganography, no general solution
with performance close to the bound is currently known. The au-
thors of [2] approached the PLS problem by minimizing the dis-
tortion on a block-by-block basis utilizing a Hamming code and
a suboptimal quantizer implemented using a brute-force search
that allows up to three embedding changes. Such an approach,
however, provides highly suboptimal performance far from the
theoretical bound (see Fig. 8). A similar approach based on
BCH codes and a brute-force quantizer was described in [4]
achieving a slightly better performance than Hamming codes.
Neither Hamming or BCH codes can be used to deal with the
wet paper channel without significant performance loss. To the
best of our knowledge, no solution is known that could be used
to solve the PLS problem with arbitrary distortion profile con-
taining wet pixels.
One promising direction towards replacing the random linear

codes while keeping the optimality of the construction has
recently been proposed by Arikan [35], who introduced the
so-called polar codes for the channel coding problem. One
advantage is that the complexity of encoding and decoding
algorithms for polar codes is . Moreover, most of the
capacity-achieving properties of random linear codes are re-
tained even for other information-theoretic problems and thus
polar codes are known to be optimal for the PLS problem
[36] (at least for the uniform profile). Unfortunately, to apply
such codes, the number of pixels, , must be very high, which
may not be always satisfied in practice. We believe that the
proposed syndrome-trellis codes offer better tradeoffs when
used in practical embedding schemes.

V. SYNDROME-TRELLIS CODES

In this section, we focus on solving the binary PLS
problem with distortion function (10) and modify a stan-

dard trellis-coding strategy for steganography. The resulting
codes are called the syndrome-trellis codes. These codes will
serve as a building block for nonbinary PLS and DLS problems
in Section VI.
The construction behind STCs is not new from an informa-

tion-theoretic perspective, since the STCs are convolutional
codes represented in a dual domain. However, STCs are
very interesting for practical steganography since they allow
solving both embedding problems with a very small coding
loss over a wide range of distortion profiles even with wet
pixels. The same code can be used with all profiles making the
embedding algorithm practically universal. STCs offer general
and state-of-the-art solution for both embedding problems in
steganography. Here, we give the description of the codes
along with their graphical representation, the syndrome trellis.
Such construction is prepared for the Viterbi algorithm, which
is optimal for solving (12). Important practical guidelines
for optimizing the codes and using them for the wet paper
channel are also covered. Finally, we study the performance of
these codes by extensive numerical simulations using different
distortion profiles including the wet paper channel.
Syndrome-trellis codes targeted to applications in steganog-

raphy were described in [17], which was written for practi-
tioners. In this paper, we expect the reader to have a working
knowledge of convolutional codes which are often used in data-
hiding applications such as digital watermarking. Convolutional
codes are otherwise described in [37, Ch. 25 and 48]. For a com-
plete example of the Viterbi algorithm used in the context of
STCs, we refer the reader to [17].
Our main goal is to develop efficient syndrome-coding

schemes for an arbitrary relative payload with the main
focus on small relative payloads (think of for ex-
ample). In steganography, the relative payload must decrease
with increasing size of the cover object in order to maintain the
same level of security, which is a consequence of the square
root law [38]. Moreover, recent results from steganalysis in
both spatial [39] and DCT domains [40] suggest that the secure
payload for digital image steganography is always far below
1/2. Another reason for targeting smaller payloads is the fact
that as , all binary embedding algorithms tend to intro-
duce changes with probability 1/2, no matter how optimal they
are. Denoting with the rate of the linear code
, then translates to , which is charac-
teristic for applications of syndrome coding in steganography.

A. From Convolutional Codes to Syndrome-Trellis Codes

Since Shannon [21] introduced the problem of source coding
with a fidelity criterion in 1959, convolutional codes were prob-
ably the first “practical” codes used for this problem [41]. This
is because the gap between the bound on the expected per-
pixel distortion and the distortion obtained using the optimal
encoding algorithm (the Viterbi algorithm) decreases exponen-
tially with the constraint length of the code [41], [42]. The com-
plexity of the Viterbi algorithm is linear in the block length of
the code, but exponential in its constraint length (the number of
trellis states grows exponentially in the constraint length).
When adapted to the PLS problem, convolutional codes can

be used for syndrome coding since the best stego image in (12)
can be found using the Viterbi algorithm. This makes convolu-
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Fig. 2. Example of a parity-check matrix formed from the submatrix ( , ) and its corresponding syndrome trellis. The last submatrices in
are cropped to achieve the desired relative payload . The syndrome trellis consists of repeating blocks of columns, where “ ” and “ ”, , denote

the starting and pruning columns, respectively. The column labeled corresponds to the th column in the parity-check matrix .

tional codes (of small constraint length) suitable for our appli-
cation because the entire cover object can be used and the speed
can be traded for performance by adjusting the constraint length.
Note that the receiver does not need to know since only the
Viterbi algorithm requires this knowledge. By increasing the
constraint length, we can achieve the average per-pixel distor-
tion that is arbitrarily close to the bounds and thus make the
coding loss (7) approach zero. Convolutional codes are often
represented with shift-registers (see [37, Ch. 48]) that generate
the codeword from a set of information bits. In channel coding,
codes of rates for are usually considered
for their simple implementation.
Convolutional codes in standard trellis representation are

commonly used in problems that are dual to the PLS problem,
such as the distributed source coding [43]. The main drawback
of convolutional codes, when implemented using shift-regis-
ters, comes from our requirement of small relative payloads
(code rates close to one) which is specific to steganography.
A convolutional code of rate requires
shift registers in order to implement a scheme for .
Here, unfortunately, the complexity of the Viterbi algorithm in
this construction grows exponentially with . Instead of using
puncturing (see [37, Ch. 48]), which is often used to construct
high-rate convolutional codes, we prefer to represent the convo-
lutional code in the dual domain using its parity-check matrix.
In fact, Sidorenko and Zyablov [44] showed that optimal
decoding of convolutional codes (our binary quantizer) with
rates can be carried out in the dual domain on
the syndrome trellis with a much lower complexity and without
any loss of performance. This approach is more efficient as

and thus we choose it for the construction of the codes
presented in this paper.
In the dual domain, a code of length is represented by a

parity-check matrix instead of a generator matrix as is more
common for convolutional codes. Working directly in the dual
domain allows the Viterbi algorithm to exactly implement the
coset quantizer required for the embedding function (12). The
message can be extracted in a straightforward manner by the re-
cipient using the shared parity-check matrix.

B. Description of Syndrome-Trellis Codes

Although syndrome-trellis codes form a class of convolu-
tional codes and thus can be described using a classical ap-
proach with shift-registers, it is advantageous to stay in the dual
domain and describe the code directly by its parity-check ma-
trix. The parity-check matrix of a binary syn-
drome-trellis code of length and codimension is obtained

by placing a small submatrix of size along the main
diagonal as in Fig. 2. The submatrices are placed next to
each other and shifted down by one row leading to a sparse
and banded . The height of the submatrix (called the con-
straint height) is a design parameter that affects the algorithm
speed and efficiency (typically, ). The width of is
dictated by the desired ratio of , which coincides with the
relative payload when no wet pixels are present. If

equals to for some , select . For general
ratios, find such that . The matrix
will contain a mix of submatrices of width and so that
the final matrix is of size . In this way, we can create
a parity-check matrix for an arbitrary message and code size.
The submatrix acts as an input parameter shared between the
sender and the receiver and its choice is discussed in more de-
tail in Section V-D. For the sake of simplicity, in the following
description we assume and thus the matrix is of
the size , where is the number of copies of in .
Similar to convolutional codes and their trellis representa-

tion, every codeword of an STC
can be represented as a unique path through a graph called

the syndrome trellis. Moreover, the syndrome trellis is parame-
trized by and thus can represent members of arbitrary coset

. An example of the syndrome
trellis is shown in Fig. 2. More formally, the syndrome trellis
is a graph consisting of blocks, each containing
nodes organized in a grid of columns and rows. The
nodes between two adjacent columns form a bipartite graph, i.e.,
all edges only connect nodes from two adjacent columns. Each
block of the trellis represents one submatrix used to obtain
the parity-check matrix . The nodes in every column are called
states.
Each satisfying is represented as a path

through the syndrome trellis which represents the process of cal-
culating the syndrome as a linear combination of the columns
of with weights given by . Each path starts in the leftmost
all-zero state in the trellis and extends to the right. The path
shows the step-by-step calculation of the (partial) syndrome
using more and more bits of . For example, the first two edges
in Fig. 2, that connect the state 00 from column with states 11
and 00 in the next column, correspond to adding or
not adding the first column of to the syndrome,
respectively.4 At the end of the first block, we terminate all paths
for which the first bit of the partial syndrome does not match .
This way, we obtain a new column of the trellis, which will serve
as the starting column of the next block. This column merely il-

4The state corresponds to the partial syndrome.
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Fig. 3. Pseudocode of the Viterbi algorithm modified for the syndrome trellis.

lustrates the transition of the trellis from representing the partial
syndrome to . This operation is re-
peated at each block transition in the matrix and guarantees
that states are sufficient to represent the calculation of the
partial syndrome throughout the whole syndrome trellis.
To find the closest stego object, we assign weights to all trellis

edges. The weights of the edges entering the column with label
, , in the syndrome trellis depend on the th bit
representation of the original cover object , . If
, then the horizontal edges (corresponding to not adding the th
column of ) have a weight of 0 and the edges corresponding to
adding the th column of have a weight of . If ,
the roles of the edges are reversed. Finally, all edges connecting
the individual blocks of the trellis have zero weight.
The embedding problem (12) for binary embedding can now

be optimally solved by theViterbi algorithmwith time and space
complexity . This algorithm consists of two parts, the
forward and the backward part. The forward part of the algo-
rithm consists of steps. Upon finishing the th step, we
know the shortest path between the leftmost all-zero state and
every state in the th column of the trellis. Thus, in the final,

th step, we discover the shortest path through the entire
trellis. During the backward part, the shortest path is traced back
and the parities of the closest stego object are recovered
from the edge labels. TheViterbi algorithmmodified for the syn-
drome trellis is described in Fig. 3 using a pseudocode.

C. Implementation Details

The construction of STCs is not constrained to having to re-
peat the same submatrix along the diagonal. Any parity-check
matrix containing at most nonzero entries along the main
diagonal will have an efficient representation by its syndrome
trellis and the Viterbi algorithm will have the same complexity

. In practice, the trellis is built on the fly because only
the structure of the submatrix is needed (see the pseudocode
in Fig. 3). As can be seen from the last two columns of the trellis

in Fig. 2, the connectivity between trellis columns is highly reg-
ular which can be used to speed up the implementation by “vec-
torizing” the calculations.
In the forward part of the algorithm, we need to store one bit

(the label of the incoming edge) to be able to reconstruct the path
in the backward run. This space complexity is linear and should
not cause any difficulty, since for , , the total of

8 bytes 122 MB of space is required. If less space
is available, we can always run the algorithm on smaller blocks,
say , without any noticeable performance drop. If we
are only interested in the total distortion and not the stego
object itself, this information does not need to be stored at all
and only the forward run of the Viterbi algorithm is required.

D. Design of Good Syndrome-Trellis Codes

A natural question regarding practical applications of syn-
drome-trellis codes is how to optimize the structure of for
fixed parameters and and a given profile. If depended
on the distortion profile, the profile would have to be somehow
communicated to the receiver. Fortunately, this is not the case
and a submatrix optimized for one profile seems to be good
for other profiles as well. In this section, we study these issues
experimentally and describe a practical algorithm for obtaining
good submatrices.
Let us suppose that we wish to design a submatrix of size

for a given constraint height and relative payload
. In [45], authors describe several methods for cal-

culating the expected distortion of a given convolutional code
when used in the source-coding problem with Hamming mea-
sure (uniform distortion profile). Unfortunately, the computa-
tional complexity of these algorithms do not permit us to use
them for the code design. Instead, we rely on estimates obtained
from embedding a pseudo-randommessage into a random cover
object. The authors were unable to find a better algorithm than
an exhaustive search guided by some simple design rules.
First, should not have identical columns because the syn-

drome trellis would contain two or more different paths with ex-
actly the same weight, which would lead to an overall decrease
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Fig. 4. Embedding efficiency of 300 random syndrome-trellis codes satisfying
the design rules for relative payload and constraint height .
All codes were evaluated by the Viterbi algorithm with a random cover object
of pixels and a random message on the constant, linear, and square
profiles. Codes are shown in the order determined by their embedding efficiency
evaluated on the constant profile. This experiment suggests that codes good for
the constant profile are good for other profiles. Codes designed for different
relative payloads have a similar behavior.

in performance. By running an exhaustive search over small ma-
trices, we have observed that the best submatrices had ones
in the first and last rows. For example, when and ,
more than 97% of the best 1000 codes obtained from the ex-
haustive search satisfied this rule. Thus, we searched for good
matrices among those that did not contain identical columns and
with all bits in the first and last rows set to 1 (the remaining bits
were assigned at random). In practice, we randomly generated
10–1000 submatrices satisfying these rules and estimated their
performance (embedding efficiency) experimentally by running
the Viterbi algorithm with random covers and messages. For a
reliable estimate, cover objects of size at least are re-
quired.
To investigate the stability of the design w.r.t. to the profile,

the following experiment was conducted. We fixed and
, which correspond to a code with . The code de-

sign procedure was simulated by randomly generating 300 sub-
matrices satisfying the above design rules. The
goodness of the code was evaluated using the embedding effi-
ciency by running the Viterbi algorithm on
a random cover object (of size ) and with a random
message. This was repeated independently for all three profiles
from Section III-B. Fig. 4 shows the embedding efficiency after
ordering all 300 codes by their performance on the constant pro-
file. Because the codes with a high embedding efficiency on the
constant profile exhibit high efficiency for the other profiles, we
consider the code design to be stable w.r.t. the profile and use
these matrices with other profiles in practice. All further results
are generated by using these matrices.

E. Wet Paper Channel

In this section, we investigate how STCs can be used for the
wet paper channel described by relative wetness

with a given distortion profile of dry pixels. Although
the STCs can be directly applied to this problem, the probability
of not being able to embed a message without changing any wet
pixel may be positive and depends on the number of wet pixels,
the payload, and the code. The goal is to make this probability
very small or to make sure that the number of wet pixels that
must be changed is small (e.g., one or two). We now describe
two different approaches to address this problem.
Let us assume that the wet channel is i.i.d. with probability

of a pixel being wet . This assumption is plausible

Fig. 5. Average number of wet pixels out of that need to be changed
to find a solution to (12) using STCs with .

because the cover pixels can be permuted using a stego key be-
fore embedding. For the wet paper channel, the relative pay-
load is defined w.r.t. the dry pixels as .
When designing the code for the wet paper channel with -pixel
covers, relative wetness , and desired relative payload , the
parity-check matrix has to be of the size .
The random permutation makes the Viterbi algorithm less

likely to fail to embed a message without having to change some
wet pixels. The probability of failure, , decreases with de-
creasing and and it also depends on the constraint height
. From practical experiments with cover pixels,
, and , we estimated from 1000 independent runs

for , for , and
for . In practice, the message size can be used as a
seed for the pseudo-random number generator. If the embedding
process fails, embedding bits leads to a different permu-
tation while embedding roughly the same amount of message.
In trials, the probability of having to modify a wet pixel is at
most , which can be made arbitrarily small.
Alternatively, the sender may allow a small number of wet

pixels to be modified, say one or two, without affecting the sta-
tistical detectability in any significant manner. Making use of
this fact, one can set the distortion of all wet cover pixels to

, and for dry. The weight
of the best path through the syndrome trellis obtained by the
Viterbi algorithm with distortion can be written in the form

, where is the smallest number of wet cover
pixels that had to be changed and is the smallest weight of
the path over the pixels that are allowed to be changed.
Fig. 5 shows the average number of wet pixels out of

required to be changed in order to solve (12) for STCs with
. The exact value of is irrelevant in this experiment

as long as it is finite. This experiment suggests that STCs can
be used with arbitrary as long as . As can be seen
from Fig. 6, increasing the amount of wet pixels does not lead to
any noticeable difference in embedding efficiency for constant
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Fig. 6. Effect of relative wetness of the wet paper channel with a constant
profile on the embedding efficiency of STCs. The distortion was calculatedw.r.t.
the changed dry pixels only and . Each point was obtained
by quantizing a random vector of pixels.

Fig. 7. Comparison of the coding loss of STCs as a function of the profile
exponent for different payloads and constraint heights of STCs. Each point
was obtained by quantizing a random vector of pixels.

profile. Similar behavior has been observed for other profiles
and holds as long as the number of changed wet pixels is small.

F. Experimental Results

We have implemented the Viterbi algorithm in C++ and opti-
mized its performance by using Streaming SIMD Extensions in-
structions. Based on the distortion profile, the algorithm chooses
between the float and 1 byte unsigned integer data type to repre-
sent the weight of the paths in the trellis. The following results
were obtained using an Intel Core2 X6800 2.93 GHz CPU ma-
chine utilizing a single CPU core.
Using the search described in Section V-D, we found good

syndrome-trellis codes of constraint height for
relative payloads , . Some of these
codes can be found in [17, Table 1]. In practice, almost every
code satisfying the design rules is equally good. This fact can
also be seen from Fig. 4, where 300 random codes are evaluated
over different profiles.
The effect of the profile shape on the coding loss for
as a function of is shown in Fig. 7. The coding loss in-

creases with decreasing relative payload . This effect can be
compensated by using a larger constraint height .
Fig. 8 shows the comparison of syndrome-trellis codes for

three profiles with other codes which are known for a given pro-
file. The ZZW family [12] applies only to the constant profile.

For a given relative payload and constraint height , the same
submatrix was used for all profiles. This demonstrates the ver-
satility of the proposed construction, since the information about
the profile does not need to be shared, or, perhaps more impor-
tantly, the profile does not need to be known a priori for a good
performance.
Fig. 9 shows the average throughput (the number of cover

pixels quantized per second) based on the used data type. In
practice, 1–5 seconds were enough to process a cover object
with pixels. In the same figure, we show the embed-
ding efficiency obtained from very short codes for the constant
profile. This result shows that the average performance of syn-
drome-trellis codes quickly approaches its maximum w.r.t. .
This is again an advantage, since some applications may require
short blocks.

G. STCs in Context of Other Works

The concept of dividing a set of samples into different bins
(the so-called binning) is a common tool used for solving many
information-theoretic and also data-hiding problems [26]. From
this point of view, the steganographic embedding problem is
a pure source-coding problem, i.e., given cover , what is the
“closest” stego object in the bin indexed by the message. In
digital watermarking, the same problem is extended by an at-
tack channel between the sender and the receiver, which calls
for a combination of good source and channel codes. This com-
bination can be implemented using nested convolutional (trellis)
codes and is better known as Dirty-paper codes [46]. Different
practical application of the binning concept is in the distributed
source coding problem [43]. Convolutional codes are attractive
for solving these problems mainly because of the existence of
the optimal quantizer—the Viterbi algorithm.

VI. MULTILAYERED CONSTRUCTION

Although it is straightforward to extend STCs to nonbinary
alphabets and thus apply them to -ary embedding operations,
their complexity rapidly increases (the number of states in the
trellis increases from to for constraint height ), limiting
thus their performance in practice. In this section, we introduce
a simple layered construction which has been largely motivated
by [10] and can be considered as a generalization of this work.
The main idea is to decompose the problems (4) and (5) with
a nonbinary embedding operation into a sequence of similar
problems with a binary embedding operation. Any solution to
the binary PLS embedding problem, such as STCs, can then be
used. This decomposition turns out to be optimal if each binary
embedding problem is solved optimally. The multilayered con-
struction was described in [18].
According to (11), the binary coding algorithm for (4) or (5)

is optimal if and only if it modifies each cover pixel with prob-
ability

(14)

For a fixed value of , the values , , form suffi-
cient statistic for .
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Fig. 8. Embedding efficiency and coding loss of syndrome-trellis codes for three distortion profiles. Each point was obtained by running the Viterbi algorithm
with cover pixels. Hamming [2] and BCH [3] codes were applied on a block-by-block basis on cover objects with pixels with a brute-force
search making up to three and four changes, respectively. The line connecting a pair of Hamming or BCH codes represents the codes obtained by their block direct
sum. For clarity, we present the coding loss results in range only for constraint height of the syndrome-trellis codes.

A solution to the PLS with a binary embedding operation can
be used to derive the following “Flipping lemma” that we will
heavily use later in this section.
Lemma 1 (Flipping Lemma): Given a set of probabilities

, the sender wants to communicate
bits by sending bit strings such that
. This can be achieved by a PLS with a binary embedding

operation on for all by embedding the pay-
load in cover with nonnegative per-pixel costs

, .
Proof: Without loss of generality, let . Since

the inverse of on [0,1] is
, by (14) the cost causes to change

to with probability

. Thus, and
as required.

Now, let for some integer and let
be parity functions uniquely describing all elements in ,
i.e., , for all and
all . For example, can be defined as the
th LSB of . The individual sets can be enlarged to satisfy
the size constraint by setting the costs of added elements to .
The optimal algorithm for (4) and (5) sends the stego sym-

bols by sampling from the optimal distribution (6) with some .
Let be the random variable defined over representing the
th stego symbol. Due to the assigned parities, can be rep-
resented as with corresponding to the
th parity function. We construct the embedding algorithm by
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Fig. 9. Results for the syndrome-trellis codes designed for relative payload . Left: Average number of cover pixels quantized per second
(throughput) shown for different constraint heights and two different implementations. Right: Average embedding efficiency for different code lengths (the
number of cover pixels), constraint heights , and a constant distortion profile. Codes of length have similar performance as for . Each point
was obtained as an average over 1000 samples.

induction over , the number of layers. By the chain rule, for
each the entropy can be decomposed into

(15)

This tells us that bits should be embedded by changing
the first parity of the th pixel. In fact, the parities should be
distributed according to the marginal distribution . Using
the Flipping lemma, this task is equivalent to a PLS, which can
be realized in practice using STCs as reviewed in Section V. To
summarize, in the first step we embed bits
on average.
After the first layer is embedded, we obtain the parities

for all stego pixels. This allows us to calculate the conditional
probability and use the chain rule
again, for example w.r.t. . In the second layer, we embed

bits on average. In total,
we have such steps fixing one parity value at a time knowing
the result of the previous parities. Finally, we send the values
corresponding to the obtained parities.
If all individual layers are implemented optimally, we send

bits on average. By the chain rule, this
is exactly in every pixel, which proves the optimality
of this construction. In theory, the order in which the parities
are being fixed can be arbitrary. As is shown in the following
example, the order is important for practical realizations when
STCs are used. In all our experiments, we start with the most
significant bits ending with the LSBs. Algorithm 1 describes
the necessary steps required to implement 1 embedding with
arbitrary costs using two layers of STCs.

Algorithm 1: 1 Embedding Implemented With Two Layers
of STCs and Embedding the Payload of bits

Require:

1: define ,

2: forbid other colors by ,

3: find such that distr. over satisfies

4:

5: define , set
, with
, and

6: embed bits with binary STC into with costs and
produce new vector

7:

8: define ,
with , and

9: embed bits with binary STC into with costs
and produce a new vector

10:

11: set such that and

12: return stego image

13: message can be extracted using STCs from
and

In practice, the number of bits hidden in every layer, ,
needs to be communicated to the receiver. The number is
used as a seed for a pseudo-random permutation used to shuffle
all bits in the th layer. If, due to large payload and wetness,
STCs cannot embed a given message, we try a different permu-
tation by embedding a slightly different number of bits.
Example 2 ( 1 Embedding): For simplicity, let ,

, , and for
and large . For such ternary embedding, we use two LSBs as
their parities. Suppose we want to solve the problem (4) with

, which leads to ,
, and . To make a power of

two, we also include the symbol 0 and define which
implies . Let be a binary represen-
tation of , where is the LSB of .
Starting from the LSBs as in [10], we obtain
. If the LSB needs to be changed, then

whereas . In practice,
the first layer can be realized by any syndrome-coding scheme
minimizing the number of changes and embedding
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bits. The second layer must be implemented with wet
paper codes [25], since we need to embed either one bit or leave
the pixel unchanged (the relative payload is 1).
If the weights of symbols 1 and 3 were slightly changed, how-

ever, we would have to use STCs in the second layer, which
causes a problem due to the large relative payload
combined with large wetness (see Fig. 5). The op-
posite decomposition starting with the MSB will reveal that

, , and
. Both layers can now be easily imple-

mented by STCs since here the wetness is not as severe
.

VII. PRACTICAL EMBEDDING CONSTRUCTIONS

In this section, we show some applications of the pro-
posed methodology for spatial and transform domain (JPEG)
steganography. In the past, most embedding schemes were
constrained by practical ways of how to encode the message
so that the receiver can read it. Problems such as “shrinkage”
in F5 [16], [23] or in MMx [2] arose from this practical con-
straint. By being able to solve the PLS and DLS problems
close to the bound for an arbitrary additive distortion function,5

steganographers now have much more freedom in designing
new embedding algorithms. They only need to select the
distortion function and then apply the proposed framework.
The only task left to the steganographer is the choice of the
distortion function . It should be selected so that it correlates
with statistical detectability. Instead of delving into the diffi-
cult problem of how to select the best , we provide a few
examples of additive distortion measures motivated by recent
developments in steganography and show their performance
when blind steganalysis is used.
In the examples below, we tested the embedding schemes

using blind feature-based steganalysis on a large database of
images. The image database was evenly divided into a training
and a testing set of cover and stego images, respectively. A soft-
margin support-vector machine was trained using the Gaussian
kernel. The kernel width and the penalty parameter were de-
termined using five-fold cross validation on the grid

, where is
the binary logarithm of the number of features. We report the re-
sults using a measure frequently used in steganalysis—the min-
imum average classification error

(16)

where and are the false-alarm and missed-detection
probabilities.

A. DCT Domain Steganography

To apply the proposed framework, we first need to design an
additive distortion function which can be tested by simulating
the embedding as if the best codes are available. Finally, the
most promising approach is implemented using STCs. We
assume the cover to be a grayscale bitmap image which we
JPEG compress to obtain the cover image. Let be a set
of indexes corresponding to AC DCT coefficients after the

5The additivity constraint can be relaxed and more general distortion mea-
sures can be used with the PLS and DLS problems in practice [7].

block-DCT transform and let be the th AC coefficient before
it is quantized with the quantization step for . We let
represent the set of all vectors containing quantized AC DCT
coefficients divided by their corresponding quantization step.
In ordinary JPEG compression, the values are quantized to

.
1) Proposed Distortion Functions: We define binary embed-

ding operation by ,
where is 1 if , 1 if and
uniformly at random. In simple words, is a quantized AC
DCT coefficient and is the same coefficient when quantized
in the opposite direction. Let be the quanti-
zation error introduced by JPEG compression. By replacing
with the error becomes . If ,
then the direction where is rounded depends on the im-
plementation of the JPEG compressor and only small pertur-
bation of the original image may lead to different results. Let

. By construction, satisfies the property of a
parity function, . The distortion function is as-
sumed to be in the form , where

.
The following four approaches utilizing values of and

were considered. All methods assign when
and differ in the definition of the remaining values

as follows:
• S1) if (as in perturbed
quantization [24]),

• S2) if (the same as
S1 but is weighted by the quantization step),

• S3) if and
otherwise, and

• S4) if and
otherwise which is similar weight assignment

as proposed in [4].
To see the importance of the side-information in the form of
the uncompressed cover image, we also include in our tests the
nsF5 [16] algorithm, which can be represented in our formalism
as , , and if and

otherwise. This way, we always have . The
nsF5 embedding minimizes the number of changes to nonzero
AC DCT coefficients.
2) Steganalysis Setup and Experimental Results: The pro-

posed strategies were tested on a database of 6, 500 digital
camera images prepared as described in [47, Sec. 4.1] so that
their smaller size was 512 pixels. The JPEG quality factor
75 was used for compression. The steganalyzer employed the
548-dimensional CC-PEV feature set [40]. Fig. 10 shows the
minimum average classification error achieved by simu-
lating each strategy on the bound using the PLS formulation.
The strategies S1 and S2, which assign zero cost to coefficients

, were worse than the nsF5 algorithm that does not
use any side-information. On the other hand, strategy S4, which
also utilizes the knowledge about the quantization step, was
the best. By implementing this strategy, we have to deal with
a wet paper channel which can be well modeled by a linear
profile with relative wetness depending on the image
content. We have implemented strategy S4 using STCs, where
wet pixels were handled by setting for a sufficiently
large . As seen from the results using STCs, payloads below
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Fig. 10. Comparison of methods with four different weight-assignment strate-
gies S1–S4 and nsF5 as described in Section VII-A when simulated as if the best
coding scheme was available. The performance of strategy S4 when practically
implemented using STCs with and is also shown.

0.15 bits per nonzero AC DCT coefficient were undetectable
using our steganalyzer.
Note that our strategies utilized only the information ob-

tainable from a single AC DCT coefficient. In reality, will
likely depend on the local image content, quantization errors,
and quantization steps. We leave the problem of optimizing
w.r.t. statistical detectability for our future research.

B. Spatial Domain Steganography

To demonstrate the merit of the STC-based multilayered con-
struction, we present a practical embedding scheme that was
largely motivated by [5] and [7]. Single per-pixel distortion
function should assign the cost of changing th pixel
, first, from its neighborhood and then also based on the

new value . Changes made in smooth regions often tend to
be highly detectable by blind steganalysis which should lead to
high distortion values. On the other hand, pixels which are in
busy and hard-to-model regions can be changed more often.
1) Proposed Distortion Functions: We design our distortion

function based on a model build from a set of all straight 4-pixel
lines in four different orientations containing th pixel which
we call cliques (see Fig. 11). Based on the set of all such cliques,
we decide on the value . Due to strong inter-pixel de-
pendencies, most cliques contain very similar values and thus
differences between neighboring pixels tend to be very close to
zero. It has been experimentaly observed [5], that number of
cliques with differences falls of quickly as the differences gets
larger. From this point of view, any clique with small differences
should lead to larger distortion because there are more samples
the warden can use for training her steganalyzer and the better
she can detect the change.
More formally, let be an

grayscale cover image, , represented in the spatial
domain. Define the co-occurrence matrix computed from hori-
zontal pixel differences , ,

:

Fig. 11. Set of 4-pixel cliques used for calculating the distortion for digital
images represented in the spatial-domain. The final distortion is ob-
tained as a sum of terms penalizing the change in pixel measured w.r.t.
each clique containing .

where
. Clearly,

is the normalized count of neighboring
quadruples of pixels with dif-
ferences , , and

in the entire image. The superscript
arrow “ ” denotes the fact that the differences are computed
by subtracting the left pixel from the right one. Similarly,
we define matrices , , and . Let

be an image obtained from by replacing the th
pixel with value . Finally, we define the distortion measure

by

(17)

where are heuristically chosen
weights.
2) Steganalysis Setup and Experimental Results: All tests

were carried out on the BOWS2 database [48] containing ap-
proximately 10,800 grayscale images with a fixed size of 512
512 pixels coming from rescaled and cropped natural im-

ages of various sizes. Steganalysis was implemented using the
second-order SPAM feature set with [39].
Fig. 12 contains the comparison of embedding algorithms im-

plementing the PLS and DLS with the costs (17). All algorithms
are contrasted with LSB matching simulated on the binary and
ternary bounds. To compare the effect of practical codes, we first
simulated the embedding algorithm as if the best codes were
available and then compared these results with algorithms im-
plemented using STCs with . Both types of senders are
implemented with binary, ternary ,
and pentary embedding opera-
tions. Before embedding, the binary embedding operation was
initialized to with randomly chosen from

. The reported payload for the DLS with a fixed
was calculated as an average over the whole database after em-
bedding.
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Fig. 12. Comparison of LSB matching with optimal binary and ternary coding with embedding algorithms based on the additive distortion measure (17) using
embedding operations of three different cardinalities.

The relative horizontal distance between the corresponding
dashed and solid lines in Fig. 12 is bounded by the coding loss.
Most of the proposed algorithms are undetectable for relative
payloads bits per pixel (bpp). For payloads , the
DLS is more secure. For larger payloads, the distortion measure
seems to fail to capture the statistical detectability correctly and
thus the algorithms are more detectable than when implemented
in the payload-limited regime. Finally, the results suggest that
larger embedding changes are useful for steganography when
placed adaptively.

VIII. CONCLUSION

The concept of embedding in steganography that minimizes
a distortion function is connected to many basic principles
used for constructing embedding schemes for complex cover
sources today, including the principle of minimal-embed-
ding-impact [16], approximate model-preservation [5], or the
Gibbs construction [7]. The current work describes a complete
practical framework for constructing steganographic schemes
that embed by minimizing an additive distortion function.
Once the steganographer specifies the form of the distortion
function, the proposed framework provides all essential tools
for constructing practical embedding schemes working close to
their theoretical bounds. The methods are not limited to binary
embedding operations and allow the embedder to choose the
amplitude of embedding changes dynamically based on the
cover-image content. The distortion function or the embedding
operation do not need to be shared with the recipient. In fact,
they can even change from image to image. The framework
can be thought of as an off-the-shelf method that allows
practitioners to concentrate on the problem of designing the
distortion measure instead of the problem of how to construct
practical embedding schemes.
The merit of the proposed algorithms is demonstrated exper-

imentally by implementing them for the JPEG and spatial do-
mains and showing an improvement in statistical detectability
as measured by state-of-the-art blind steganalyzers. We have
demonstrated that larger embedding changes provide a signif-
icant gain in security when placed adaptively. Finally, the con-
struction is not limited to embedding with larger amplitudes but
can be used, e.g., for embedding in color images, where the
LSBs of all three colors can be seen as 3-bit symbols on which
the cost functions are defined. Applications outside the scope of

digital images are possible as long as we know how to define
the costs.
The implicit premise of this paper is the direct relationship

between the distortion function and statistical detectability.
Designing (and possibly learning) the distortion measure for a
given cover source is an interesting problem by itself and is
left for our future research. We reiterate that our focus is on
constructing practical coding schemes for a given . Examples
of distortion measures presented in this work are unlikely to
be optimal and we include them here mainly to illustrate the
concepts.
C++ implementation with Matlab wrappers of STCs

and multilayered STCs are available at http://dde.bing-
hamton.edu/download/syndrome/.
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