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Abstract— Steganography detectors built as deep convolutional
neural networks have firmly established themselves as superior to
the previous detection paradigm – classifiers based on rich media
models. Existing network architectures, however, still contain
elements designed by hand, such as fixed or constrained convolu-
tional kernels, heuristic initialization of kernels, the thresholded
linear unit that mimics truncation in rich models, quantization
of feature maps, and awareness of JPEG phase. In this work,
we describe a deep residual architecture designed to minimize the
use of heuristics and externally enforced elements that is universal
in the sense that it provides state-of-the-art detection accuracy
for both spatial-domain and JPEG steganography. The key part
of the proposed architecture is a significantly expanded front part
of the detector that “computes noise residuals” in which pooling
has been disabled to prevent suppression of the stego signal.
Extensive experiments show the superior performance of this
network with a significant improvement, especially in the JPEG
domain. Further performance boost is observed by supplying the
selection channel as a second channel.

Index Terms— Steganography, steganalysis, convolutional
neural network, deep residual network, selection channel, SRNet.

I. INTRODUCTION

STEGANOGRAPHY in its modern form is a private, covert
communication method in which the sender hides the

message inside an innocuous looking cover object using an
algorithm driven by a secret shared with the recipient. The
communication channel is observed by an adversary or warden
who tries to establish whether the communicating parties use
steganography. The most popular source of cover objects are
digital multimedia files and images in particular. As of 2017,
46% of all steganographic tools available on the Internet can
hide messages in digital images stored in raster formats, such
as BMP, PNG, and TIFF, and the lossy JPEG format.1

With the exception of steganographic schemes based on
Least Significant Bit (LSB) replacement [14], [56], [57] and
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steganography in singular cover sources that permit powerful
compatibility attacks [6], [22], [37], [42], the most accurate
detectors have been built using the tools of machine learning.
This trend has been started by Avcibas et al. [1], [2] and Farid
and Siwei [18] in early 2000’s and was later greatly improved
by representing images with higher-order statistics of noise
residuals or DCT coefficients [43], [49], [68]. It culminated
in what is recognized today as steganalysis with rich mod-
els [9], [15], [17], [19], [30], [38], [50], [53] and scalable
machine learning [13], [40], [44].

Recently, deep learning [23] has been proposed for ste-
ganalysis in an attempt to improve detection accuracy by
jointly optimizing the image representation (features) as
well as the classifier. Beginning with detectors that used
stacked auto-encoders [52], in an early influential work by
Qian et al. [45] the authors described a neural network
steganalyzer with a Gaussian activation function equipped with
a fixed preprocessing high-pass KV filter [39, eq. (9)] whose
role was to suppress the image content and thus improve the
signal-to-noise ratio between the stego signal and the host
image. The authors observed that without the fixed high-pass
filter their network did not converge. The XuNet proposed
in [61] and [62] was the first architecture with a competitive
performance. It employed the absolute value layer and TanH
activation [23, Ch. 6.3.2, pp. 189] in the front part of the
network, batch normalization [33], and 1 × 1 convolutions
to compactify the feature maps. It, too, contained a fixed
high-pass filter as part of image preprocessing during training
and testing. The next advancement, the YeNet [65], can be
considered as a breakthrough result as the proposed detector
significantly improved upon established steganalysis detectors
in the spatial domain. YeNet contained several novel design
elements: a new activation function called the Thresholded
Linear Unit (TLU), thirty 5 × 5 kernels in the first layer
initialized with SRM (Spatial Rich Model [19]) filters, and
an effective way to incorporate the selection channel into the
network based on [15] and [16]. The work also pointed out
the importance of using larger training datasets for deeper
networks and the merit of alternative adaptive optimizers,
in particular the AdaDelta gradient descend variant [66].
A deep residual network for steganalysis has recently been
proposed in [58]. This work is, unfortunately, faulty, because
the detector was essentially trained to recognize, when pre-
sented with batches of unlabeled cover-stego pairs, which one
of them is cover and which is stego, which is a significantly
easier task, unrealistic in any practical application. The authors
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mentioned on their web site that they were working on a
modified architecture.2

Detectors constructed using deep learning have also
advanced the state of the art in the JPEG domain [10], [60],
[64], [67]. Chen et al. [10] modified the XuNet for steganalysis
of JPEG images by splitting the feature maps into 64 parallel
channels to make the architecture aware of JPEG phase – the
underlying grid of 8 × 8 pixels. The design mimicked the
construction of the so-called JPEG-phase-aware noise residu-
als discovered by Holub et al. [29], [30] and later improved
by using Gabor filters for noise residual extraction [50], [59]
and making them aware of the selection channel [15].
A 20-layer deep network with shortcut connections [26], [27]
for steganalysis of J-UNIWARD [31] has been proposed by
Xu et al. [60]. This architecture, too, relied on fixed pre-
processing DCT kernels in the first convolutional layer and
thresholding its feature maps.

When designing the architecture proposed in this paper, our
goal was a clean end-to-end design that could be used for a
wider range of applications and work well for steganalysis
in both spatial and JPEG domains. We let ourselves be
guided by the latest advancements in deep learning and rather
general principles and insights to minimize the use of exter-
nally enforced constraints or heuristics. Fixed or constrained
preprocessing kernels or kernels initialized to SRM filters
or DCT bases can in fact be detrimental for the overall
network performance depending on the characteristics of the
stego signal. High-pass filters, such as the popular KV filter,
suppress a major portion of the stego signal introduced by
JPEG steganography because the embedding modifications are
applied to quantized DCT coefficients. This has already been
observed and analyzed in [10] where the authors introduced
additional fixed filters into the first convolutional layer to
improve detection of JPEG steganography. Ideally, however,
the best filters should also be learned rather than enforced as
it is unlikely that hand-designed filters or non-random kernel
initializations will be optimal for the chosen architecture.

The overall design consists of four different types of layers,
two of which involve the so-called residual shortcuts that have
been shown in the literature [26], [27] to improve convergence
and help learn the parameters in upper layers of deep networks,
which are typically the hardest to learn. Functionally, the net-
work consists of three serially connected segments – the front
segment whose role is to learn effective “noise residuals,” the
middle segment that compactifies the feature maps, and the last
segment is a simple linear classifier. The front segment consists
of seven layers in which pooling [23, Ch. 9.3, pp. 330–334]
has been disabled to prevent suppression of the stego signal
due to averaging neighboring samples in feature maps during
average pooling.

We would like to emphasize that, in its original form,
we do not supply the network with the knowledge of the
selection channel as we firmly believe that, for the best results,
the network should become aware of the selection channel via
end-to-end training. Having said this, we acknowledge that
introducing the selection channel via a parallel branch in the

2https://github.com/Steganalysis-CNN/residual-steganalysis

first layer did improve the performance, which indicates a
space for future improvement in the quest for a completely
data-driven steganography detector.

At this point, the authors would like to point out a ter-
minology clash between steganalysis and deep learning as the
term “residual” has been firmly established in both fields but is
used for two completely different entities. To prevent potential
confusion, the phrase “noise residual” will be strictly used for
a pixel prediction error in steganalysis while “residual layer/
module/connection” will always relate to the popular residual
network architecture in deep learning [26], [27].

Section II contains the description of the proposed network
architecture and a discussion of our design choices. The
training, which is unified in both spatial and JPEG domain,
is detailed in Section III, where we also describe the setup
of all our experiments, the performance evaluation metric
as well as the list of prior art with which the proposed
detector is compared. The results of experiments in spatial
and JPEG domain appear in Section IV. The performance is
evaluated in terms of the minimal detection error under equal
priors. We also report the detection performance on selected
cases using the receiver operating characteristic curves with
the false-alarm rate for true positive rates of 0.5 and 0.3.
In Section V, we show that further boost of detection accuracy
can be achieved in both domains by introducing the selection
channel into the network. The paper is closed in Section VI
with a discussion of potential further improvements and our
anticipated future effort.

II. SRNET FOR IMAGE STEGANALYSIS

The proposed network architecture is called SRNet –
Steganalysis Residual Network. The word “residual” refers
to both the central term used in steganalysis and residual
layers with shortcut connections from deep learning [26].
The shortcut connections help propagate gradients to upper
layers, which are the hardest to train because of the vanishing
gradient phenomenon [21] that often negatively affects the
convergence and performance of deep architectures [26], [27].
They also encourage feature reuse in the training process.
We first describe the architecture of SRNet and then explain
and justify each component separately, motivating thus the
design.

A. Architecture

Although it is not generally possible to claim that a certain
part of a network detector executes a specific task, we found
it useful to view the proposed detector schematically depicted
in Figure 1 as a concatenation of three segments: the front
segment responsible for extracting the noise residuals, outlined
in the figure by the first two shaded segments (Layers 1–7),
the middle segment whose goal is to reduce the dimensionality
of the feature maps, the third shaded segment and Layer 12,
and the last segment, which is a standard fully connected layer
followed by a softmax node [23], the linear classifier.

The input is assumed to be a grayscale 256× 256 image.3

All convolutional layers employ 3 × 3 kernels and all non-

3Reference [20] explains how to steganalyze images of arbitrary size with
network detectors.
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Fig. 1. Architecture of the proposed SRNet for steganalysis. The first two shaded boxes correspond to the segment extracting noise residuals, the dark shaded
segment and Layer 12 compactify the feature maps, while the last fully connected layer is a linear classifier. The number in the brackets is the number of
3× 3 kernels in convolutional layers in each layer. BN stands for batch normalization.

linear activation functions are ReLU. Note that Layers 1–7 use
unpooled feature maps on their input. Pooling in the form of
3 × 3 averaging with stride 2 is applied on the output of
Layers 8–11. In Layer 12, 512 feature maps of dimension
16 × 16 are reduced to a 512-dimensional feature vector by
computing statistical moments (averages) of each 16 × 16
feature map. This 512-dimensional output enters the classifier
part of the network. The first two layers do not contain
any residual shortcuts or pooling. Layers 3–7 have residual
shortcuts and no pooling. Layers 8–11 contain both pooling
and residual shortcuts.

SRNet contains two types of layers with shortcuts because
unpooled layers (Type 2) require different shortcut connections
than pooled layers (Type 3). The first two layers of Type 1 with
3×3 filters worked better for us than one layer with 5×5 filters.
Their purpose is to begin with a larger number of kernels (64)
and then decrease the number of feature maps to 16 before
the unpooled layers to save on memory. The Type 4 layer is
different from the last layer of Type 3 because of the global
pooling applied before the fully connected classifier part.

B. Motivating the Architecture
The key part of the SRNet is the noise residual extrac-

tion segment consisting of the first seven layers. Because
average pooling is a low-pass filter, it reinforces content

and suppresses noise-like stego signals by averaging adjacent
embedding changes. While this is desirable in typical computer
vision applications for classifying content, it is detrimental
for steganalysis where the signal of interest is the stego noise
while the “noise” is the image content. Guided by this insight,
SRNet does not use pooling until Layer 8 to avoid decreasing
the energy of the stego signal and allow it to optimize the
noise residual extraction process for various types of selection
channels and steganographic embedding changes.

All filters in SRNet are randomly initialized and learned
via an end-to-end training process. This allows the network
to adapt to a greater variety of stego signals because the
polarity of and dependencies among embedding changes
vary significantly across different steganographic methods and
especially domains. Embedding modifications introduced by
spatial-domain embedding methods that minimize an additive
distortion, such as WOW [28], HILL [41], S-UNIWARD [31],
and MiPOD [47] are largely uncorrelated, while changes to
quantized DCT coefficients in JPEG image steganography lead
to a stego signal with significant energy in low and medium
spatial frequencies.

The proposed architecture was formed based on results of
many experiments in which we tested different allocations of
resources to the three above mentioned segments so that the
network can be trained with a reasonable minibatch size on
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a single GPU with 12 GB of memory, examples of which
are the popular Titan X and Xp, Tesla K40 and K80, and
GTX 1080 Ti (11 GB). Most of the exploration focused on
determining the number of layers in each segment, the number
of filters in each layer, and the optimizer.

The remainder of this section is divided into subsections,
each devoted to a specific design element of SRNet. The exper-
imental results quoted here were all obtained with the setup
explained in Section III on the standardized dataset BOSSbase
+ BOWS2 (Section III-A) with the detector accuracy reported
using the minimal total detection error PE under equal priors
based on the training, validation, and testing (Section III-D).

1) Activations: Besides the ReLU, we have also experi-
mented with TanH activation, the leaky ReLU, ELU [11],
and SELU [36], but they did not bring any performance
gain. To avoid additional complexity and guided by simplicity,
we selected ReLU for all activation functions in our network.

Note that layers of Type 2 and 3 do not use ReLU
after the shortcut connections. While the original residual
networks [26], [27] do include ReLU after the addition of
the shortcut connections, with these activations removed,
we observed a small gain of up to 1% in detection accuracy.

2) Residual Shortcuts: To assess the importance of shortcut
connections in SRNet, we removed them from layers of Type
2 and 3 and observed the change in detection accuracy. For
example, for HILL at 0.1 and 0.2 bpp the loss of classification
accuracy was about 0.5% and for J-UNIWARD at 0.4 bpnzac,
quality factor 95, the loss was 1.5%. While the performance in
these cases was still competitive, the loss of detection power
increased with decreased class separability, e.g., for small
payloads and larger JPEG quality.

3) Dense Connections and Inception: Dense connections in
deep learning were introduced with a similar goal as residual
layers – to help with gradient propagation and convergence,
feature reuse, and to reduce the number of parameters to
learn [32]. We investigated the effect of dense connections
introduced in the second segment of the SRNet – unpooled
Layers 3–7. On experiments with the embedding algorithms
HILL and S-UNIWARD at 0.4 bpp, the SRNet with dense
connections did not provide statistically significant better
results as SRNet with residual connections (the statistical
significance was assessed based on the statistical spread of
detection accuracy w.r.t. the snapshot selected for the final
detector). Dense connections, however, may have more impact
on deeper architectures than the SRNet.

The main idea behind “inception” is that each layer con-
catenates the outputs of filters of different sizes, which is
reminiscent of fusing multiple-resolution representations in
image processing [51]. Type 3 layers in SRNet (see Figure 1)
sum the outputs of what is an effective 5×5 filter in the main
branch (in terms of the receptive field) and a 1× 1 filter (the
shortcut branch). We added an additional branch to this layer
type with 3× 3 filters followed by batch normalization. This
required other changes in the architecture to fit the modified
SRNet in GPU memory – we decreased the number of feature
maps in Type 3 layers to one half. SRNet modified in this
manner gave a slightly worse (0.5–1%) detection accuracy on
both HILL and S-UNIWARD tested at 0.4 bpp. Due to limited

GPU memory, a proper study of inception modules within the
SRNet would require a comprehensive study that is beyond
the scope of this paper.

4) Unpooled Layers: We now comment on the number of
unpooled layers and their effect on detection. Decreasing their
number from seven to six or five while keeping the rest of
the architecture unchanged lead to a small and gradual loss
of accuracy. For example, for J-UNIWARD at 0.4 bpnzac
(bits per non-zero AC DCT coefficient) and JPEG quality 75,
the detection error PE increased from 0.0670 to 0.0701 and
0.0748 when the number of unpooled layers was changed from
7 to 5 and 4, respectively. This loss increases with decreasing
payload. Also, we observed that this loss is typically smaller
in the spatial domain and larger in the JPEG domain. Across
the tested algorithms in both domains, the detection accuracy
tends to level out at 5–6 unpooled layers. We opted for seven
in our proposed design to avoid potential loss of detection for
more diverse cover and stego sources.

To assess the significance of disabling pooling in
Layers 1–7, we carried out additional experiments in which
pooling has been progressively enabled in Layers 7, 6, 5, and
4. Note that enabling pooling in more than four layers would
require removing layers from group 3 because the size of the
feature maps before the output layer decreases from 16× 16
to 8 × 8, and eventually 1 × 1 when pooling is enabled in
four layers.

The experiments were executed for HILL at 0.4 bpp and
J-UNIWARD at 0.4 bpnzac to cover both embedding domains.
With enabling average pooling in Layers 7–4, starting with
Layer 7, the detection error for HILL rapidly increased from
0.1414 (with the original SRNet) to 0.1528, 0.1823, 0.2202,
and 0.3697. For J-UNIWARD, the detection error grew from
0.0670 to 0.0755, 0.0886, 0.1263, and 0.1710.

5) Number of Filters: The effect of the number of filters in
the first layer has a larger impact in the JPEG domain than in
the spatial domain. While the detection error, PE, for HILL at
0.4 bpp increased negligibly when using only 32 and 16 filters
instead of 64 in the first layer (0.1414, 0.1432, and 0.1438 for
64, 32, and 16 filters), for J-UNIWARD at 0.1 bpnzac at JPEG
quality 75, decreasing the number of filters from 64 to 32 lead
to an increase of PE of about 1%. Increasing the number of
filters beyond 64 did not seem to lead to any improvement in
detection.

6) Optimizer: Finally, we experimented with several opti-
mizers, including the AdaDelta [66], Adam [35], Adamax [35],
and a simple stochastic gradient descend [23, Ch. 8.3.1,
pp. 286–288]. In the end, we settled on Adamax since it
provided the most reliable and fastest convergence.

III. SETUP OF EXPERIMENTS

This section describes the common core of all experiments
that appear in Section IV and V, including the datasets and
SRNet training, the list of prior art to which SRNet is to be
compared, and the evaluation metric.

A. Datasets

SRNet was primarily evaluated and contrasted with prior
art on the union of BOSSbase 1.01 [3] and BOWS2 [4],
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each containing 10,000 grayscale images resized from their
original size 512× 512 to 256× 256 using imresize with
default setting in Matlab. For JPEG experiments, this source
was additionally compressed with quality factors 75 and 95.

Randomly chosen 4,000 images from BOSSbase and
the entire BOWS2 dataset were used for training with
1,000 BOSSbase images set aside for validation. The remain-
ing 5,000 BOSSbase images were used for testing. This
setup permitted a direct comparison with the current state-of-
the-art spatial-domain detector, the YeNet [65]. In summary,
2 × 14, 000 cover and stego images were used for training,
2 × 1, 000 for validation, and 2 × 5, 000 for testing. This
applies to both the spatial and JPEG domain and all network
detectors. JPEG images were decompressed without rounding
to integers.

To test the network on a significantly larger and more realis-
tic dataset, we performed additional experiments on ImageNet,
namely its CLS-LOC version [46] containing 1,281,167 JPEG
images meant to be used for training sorted into 1,000 cate-
gories (the dataset used in [60]). We selected 250 images from
each category at random, subjecting each image that was larger
than 256×256 pixels and whose JPEG quality was above 75 to
the following chain of processing in Matlab: decompression
to the spatial domain (imread), cropping the upper left tile
of size 256× 256, conversion to grayscale using rgb2gray,
and recompression with JPEG quality factor 75. This mimics
the preprocessing that was executed in [60] and [67]. In par-
ticular, the requirement to work only with JPEG images with
quality larger than 75 was imposed to avoid working with
images exhibiting traces of double compression (lower quality
followed by larger quality) as this would introduce peaks and
valleys in histograms of quantized DCT coefficients, which
could be exploited for targeted attacks. The total size of this
dataset was thus 2×250,000 cover-stego images out of which
2×10,000 pairs were selected for validation and 2×40,000 for
testing.

B. SRNet Training

The SRNet has been trained in both domains with the
same hyperparameters and in the same fashion. The stochastic
gradient descend optimizer Adamax4 [35] was used with
minibatches of 16 cover-stego pairs. The training database
was shuffled after each epoch. Images in each batch were
subjected to data augmentation with random mirroring and
rotation of images by 90 degrees. The batch normalization
parameters were learned via an exponential moving average
with decay rate 0.9. The filter weights were initialized with
the He initializer5 and 2 × 10−4 L2 regularization. The filter
biases were set to 0.2 and no regularization. For the fully
connected classifier layer, we initialized the weights with a
zero mean Gaussian with standard deviation 0.01 and no bias.

On our dataset, the training was run for 400k iterations
(457 epochs) with an initial learning rate of r1 = 0.001
after which the learning rate was decreased to r2 = 0.0001

4Code available from https://github.com/openai/iaf/blob/master/tf_utils/
adamax.py

5https://arxiv.org/pdf/1502.01852v1.pdf

for an additional 100k iterations (114 epochs). The snap-
shot achieving the best validation accuracy in the last 100k
iterations was taken as the result of training. This training
strategy was applied for all embedding algorithms for pay-
load 0.4 bpp/bpnzac (bits per pixel / bits per non-zero AC
DCT coefficient) with the exception of J-UNIWARD at JPEG
quality 95 (see the next paragraph). The detectors for all
remaining payloads were built via curriculum training [5]
with 50–100k iterations (57–114 epochs) with learning rate r1
and an additional 50k iterations (57 epochs) with the smaller
learning rate r2. Again, the best validation snapshot in the
last 50k iterations was taken as the detector. While this was
applied in both spatial and JPEG domain, we observed that
in the spatial domain the same results could be obtained by
curriculum training only with the smaller learning rate.

For J-UNIWARD and JPEG quality factor 95 at 0.4 bpnzac,
we experienced convergence problems when training from a
randomly initialized network. This was resolved by seeding
the network with the detector trained for J-UNIWARD for
quality factor 75 at 0.4 bpnzac, after which we trained for 400k
iterations with learning rate r1 followed by 100k iterations
with r2.

We tested two types of curriculum training – by seeding
with the network trained for payload 0.4 bpp/bpnzac and by
training in a progressive manner that is perhaps best described
symbolically as 0.1←0.2←0.3←0.4→0.5. In other words,
first the detectors for payload 0.3 and 0.5 were trained by
seeding with the network trained for 0.4. Then, the detector for
payload 0.2 was seeded with the network trained for 0.3, etc.
While both types of curriculum training gave similar results
in the spatial domain, the progressive training gave slightly
better results in the JPEG domain.

C. Tested Prior Art

For comparison with the current state of the art on the
union of BOSSbase and BOWS2, in the spatial domain SRNet
was compared with YeNet [65] and on JPEG algorithms
with the PNet/VNet [10] and the network recently proposed
by Xu et al. [60], which we call in this paper J-XuNet to
distinguish it from the network introduced in [62]. We note
that when we attempted to train the YeNet on decompressed
JPEGs with quality factor 75 embedded with J-UNIWARD
at 0.4 bpnzac the network did not appear to converge.

To show the gain in detection accuracy w.r.t. the old detec-
tion paradigm based on the ensemble classifier and rich mod-
els, we steganalyzed all spatial-domain embedding algorithms
with the maxSRMd2 [17] features non-linearly normalized
using random conditioning (RC) [8]. JPEG steganography was
steganalyzed with the Selection-Channel-Aware Gabor Filter
Residuals [15] (SCA-GFR). The SCA-GFR features were not
normalized or transformed [7], [8] because this type of features
does not benefit from such preprocessing.

All prior art CNN detectors were trained as described in
the corresponding papers. We observed that for the J-XuNet
on 256 × 256 images, it was beneficial to decrease the
learning rate by 10% every 8 epochs instead of 16 to avoid
a loss of performance for small payloads. For J-UNIWARD
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quality factor 95, we had to train the J-XuNet for payloads
0.1 and 0.2 bpnzac via curriculum training from 0.3 bpnzac.

Due to the size of ImageNet, we limited our experiments
on this dataset to J-UNIWARD at quality factor 75 and only
compared to J-XuNet and the recently proposed hybrid deep
network incorporating J-XuNet as a “subnet” as described in
Sec. III.E of [67] (Fig. 13a), which we abbreviate in this paper
as H-Net.

All detectors were trained on exactly the same data sets
as the SRNet, implemented in TensorFlow, and run on a
single GPU. It takes approximately two and half days to
train the SRNet on a Titan Xp GPU. Note that we did not
form ensembles of CNN detectors in this paper. Quite likely,
further small improvement in detection accuracy could be
obtained across all investigated network detectors by forming
an ensemble either over different snapshots obtained from a
single training or over independently trained networks.

D. Evaluation Metric

The detection performance was measured with the total
classification error probability on the testing set under equal
priors PE = minPFA

1
2 (PFA + PMD), where PFA and PMD are

the false-alarm and missed-detection probabilities. For selected
cases, we show the ROC curves and an alternative measure of
performance, the false-alarm rates for stego-image detection
probability PD = 1− PMD = 0.5 and 0.3.

The results reported in the next section are for one random
50/50 split of BOSSbase because it would not be computa-
tionally feasible to train all networks on multiple different
splits to obtain a more statistically robust result. To assess
the statistical spread across different BOSSbase splits and
thus interpret the statistical significance of the improvement
of SRNet w.r.t. the state of the art, we trained the SRNet on
five different 50/50 BOSSbase splits (BOWS2 was always a
part of the training set) for HILL at 0.3 bpp and J-UNIWARD
at 0.4 bpnzac and JPEG quality 75. The standard devia-
tion of PE across these five splits was 0.0035 and 0.0016,
respectively. The statistical spread appears coincidentally com-
parable to what has typically been reported for detectors
implemented with rich models and the ensemble classifier
(see, e.g., [15], [17]).

IV. EXPERIMENTS

This section contains the results of all experiments and their
interpretation divided into two subsections based on the type
of the embedding domain.

A. Spatial Domain

For spatial domain steganalysis, we report the results for
five payloads: 0.1–0.5 bpp (bits per pixel) for WOW [28],
HILL [41], and S-UNIWARD [31]. The detection error PE is
shown in Table I. Depending on the algorithm and payload
SRNet improves upon SCA-YeNet by up to 3% in PE. The
biggest improvement is typically observed for larger payloads.
The only exception is for WOW for the smallest tested
payload 0.1 bpp when SRNet performs by 1.5% worse than the

TABLE I

DETECTION ERROR PE FOR MAXSRMD2 WITH RANDOM CONDITIONING

AND ENSEMBLE, SRNET, AND SELECTION-CHANNEL-AWARE YENET

FOR FIVE PAYLOADS IN bpp AND THREE SPATIAL

DOMAIN EMBEDDING ALGORITHMS

SCA-YeNet. This loss of performance is due to the fact that
SRNet does not make explicit use of the selection channel
while YeNet benefits quite significantly by employing the
selection channel for WOW (c.f. columns 3 and 5 in Table VIII
in [65]). In Section V, we show that this loss can be com-
pensated by introducing the selection channel to SRNet in a
similar manner as in YeNet. Finally, both network detectors
clearly outperform the old steganalysis paradigm.

ROC curves for rich-model based detectors are well known
to be mean-shifted Gauss-Gauss (see, e.g., [12]) and as such do
not perform well for low false alarms. In contrast, the detection
statistic outputted by network detectors exhibits non-Gaussian
characteristics and, as we found out, achieves significantly bet-
ter performance for low rates of false alarm, a goal identified
as one of the most relevant problems for practitioners in [34].
Figure 2 shows four ROC curves of SRNet for S-UNIWARD
and HILL for two payloads and the false alarm rates PFA
for two test powers: PD ∈ {0.3, 0.5}. For the larger payload
0.4 bpp, PD = 0.5 can be achieved with PFA = 6× 10−4 for
S-UNIWARD and 4.2× 10−3 for HILL. In contrast, the low-
complexity linear classifier [12] with maxSRMd2 features [17]
(the last two columns in the table underneath Figure 2)
exhibits 4–30 times larger (!) false alarms for the two test
powers.6

B. Transfer Learning

To assess the ability of the SRNet to detect mismatched
stego sources, which is a situation likely to be encountered
in practice, we include the result of an investigation in which
the SRNet was trained on one embedding algorithm and tested
on a different one at the same payload. Table II shows that
the SRNet trained on the least detectable algorithm (MiPOD)
transfers the best while, when trained on the most detectable
algorithm (WOW), it transfers the least. This is consistent with
the results reported in [10] for the JPEG-phase-aware network
in JPEG domain.

C. JPEG Domain

For the JPEG domain, J-UNIWARD [31] and UED-JC [25]
for payloads 0.1–0.5 bpnzac (bits per non-zero AC DCT coef-

6The low-complexity linear classifier was used instead of the ensemble to
be able to obtain the performance measures reported in Figure 2.
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Fig. 2. ROC curves of SRNet for S-UNIWARD and HILL at 0.2 and 0.4 bpp
together with two detection performance measures: PFA for PD = 0.5
and 0.3 also computed for the low-complexity linear classifier with the
maxSRMd2 feature set transformed using random conditioning.

TABLE II

DETECTION ERROR PE FOR SRNET TRAINED ON ONE ALGORITHM AND

TESTED ON OTHER ALGORITHMS. PAYLOAD FIXED AT 0.4 bpp

ficient) were tested for quality factors 75 and 95. The results
of the experiments are shown graphically in Figures 4 and 5
and Table III.

For UED-JC, SRNet detection error is up to 8% lower than
J-XuNet and the improvement is up to 17% w.r.t. state of the
art for J-UNIWARD for quality factor 95. A very significant
improvement of up to 18.5% (!) is observed w.r.t. the old
detection paradigm, the SCA-GFR with ensemble classifier.
Four ROC curves of the SRNet are shown in Figure 6 for
J-UNIWARD, payloads 0.2 and 0.4 bpnzac, and two quality
factors. Again, the network detector enjoys a very small
false alarm rate for probability of detection 0.5 and 0.3 that
is significantly smaller than for the old detection paradigm,
the low-complexity linear classifier [13] with the SCA-GFR
feature set. Note that for J-UNIWARD at 75 JPEG quality and
payload 0.4 bpnzac, detection rate PD = 0.3 was achieved with
no false alarms on the 10,000 images from the testing set.

Figure 3 shows an example of the progression of the training
and validation error when training SRNet on J-UNIWARD

Fig. 3. Training and validation error PE for J-UNIWARD QF 75 at
0.4 bpnzac.

at 75 JPEG quality and payload 0.4 bpnzac. Note the drop
in detection error due to decreasing the learning rate at
iteration 400k.

1) ImageNet: A subset of the CLS-LOC version of the
ImageNet [46] with 250,000 grayscale 256×256 JPEG images
was included in our tests to show the performance of SRNet on
a more realistic dataset containing images from a large number
of different sources including multiple-compressed images.
For comparison with prior art, we included J-XuNet and the
hybrid network with the “J-XuNet model” by Zeng et al. [67]
(Fig. 13a) that has been published during the writing of this
paper.

The detection error PE as a function of embedded payload
size for J-UNIWARD at JPEG quality 75 is shown in Figure 7.
The gain of SRNet w.r.t. both J-XuNet and H-Net is between
5–7%. Also, in contrast to the claims made in [67], H-Net
with J-XuNet as the subnet provides approximately the same
performance as J-XuNet itself. This was also observed on our
other dataset, BOSSbase + BOWS2, but is not shown in this
paper.

It is also interesting to contrast the detection errors on
ImageNet with those on the more “sand boxed” environment –
the union of BOSSbase and BOWS2. Because of the far
greater diversity of ImageNet, the detection error on this
source is larger by 6.6–9% compared to the more homoge-
neous image source.

V. SRNET WITH SELECTION CHANNEL

When detecting a known content-adaptive steganographic
algorithm, the Warden may use the fact that the embedding
change probabilities (the so-called selection channel) with
which the pixels or DCT coefficients were changed in a
stego image are known [15]–[17], [53], [54]. Even though
the selection channel computed from the stego image will
inevitably be different than the selection channel used for
embedding by the sender computed from the cover image,
these differences are typically fairly small because the selec-
tion channel (the embedding costs) are typically insensitive to
embedding changes [48]. Furthermore, it has been shown [48]
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TABLE III

DETECTION ERROR PE FOR SRNET AND PRIOR ART FOR FIVE PAYLOADS IN BPNZAC FOR

J-UNIWARD AND UED-JC FOR QUALITY FACTORS 75 (LEFT) AND 95 (RIGHT)

Fig. 4. Detection error PE for VNet, PNet, J-XuNet, and SRNet for J-UNIWARD QF 75 (left) and 95 (right).

Fig. 5. Detection error PE for VNet, PNet, J-XuNet, and SRNet for UED-JC QF 75 (left) and 95 (right).

that, at least for classifiers trained with rich media models,
it is still beneficial to use an imprecise selection channel
(e.g., because the payload size is not known) than not use
it at all.

While the incorporation of the selection channel helps
detection, it has always been achieved in some heuristic
manner. In the so-called t-SRM proposed by Tang et al. [53],
the four-dimensional SRM co-occurrence matrices of noise

residuals were computed from a subset corresponding to
pixels with the largest embedding change probabilities.
In maxSRM [17] (and in [54]), the co-occurrences contain
the accumulated maximum change rate (the sum of change
rates) over all adjacent four-tuples of noise residuals. This
idea was further refined in [15] and [16] where the authors
showed that further improvement can be obtained by replacing
the change rate as the quantity being accumulated with an
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Fig. 6. ROC curves of SRNet for J-UNIWARD at 0.2 and 0.4 bpp for quality
factors 75 and 95 together with two detection performance measures: PFA for
PD = 0.5 and 0.3 for the low-complexity linear classifier with the SCA-GFR
feature set.

Fig. 7. Detection error PE for J-XuNet, H-Net, and SRNet for J-UNIWARD
QF 75 on ImageNet.

upper bound on the L1 noise residual distortion due to
embedding.

With the introduction of deep learning to steganalysis,
researchers investigated various ways how to inform the neural
network about the embedding change probabilities [63], [65].

Fig. 8. The first layer in SCA-SRNet. The left branch is the main branch
while the branch on the right brings in the information about the selection
channel. Top: spatial domain, Bottom: JPEG domain.

TABLE IV

EFFECT OF INTRODUCING THE SELECTION CHANNEL

INTO SRNET (SPATIAL DOMAIN)

While SRNet was intentionally designed to be free of such
heuristic elements to allow a clean end-to-end training and
while we believe that a sufficiently complex and suitably
designed and trained architecture will not need an external
insertion of the selection channel, the SRNet may still benefit
from being informed about the probabilistic impact of embed-
ding. Indeed, the experiments in Section IV-A indicate a small
loss of detection accuracy w.r.t. SCA-YeNet for small payloads
for WOW.

The selection channel has been incorporated in SRNet in the
same fashion as in YeNet [65], which was inspired by [16].
We first describe the modification of the architecture for the
spatial domain. Given the l-th, l = 1, . . . , 64, convolution
kernel W(l) ∈ R

3×3 from the first layer, the convolution
W(l) �x is a form of noise residual. The impact of embedding
on this noise residual can be quantified by evaluating an
upper bound on the L1 distortion, which, for steganography
that modifies cover pixels independently by ±1, can be
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TABLE V

EFFECT OF INTRODUCING THE SELECTION CHANNEL INTO SRNET (JPEG DOMAIN)

computed as |W(l)|�β , where β is the matrix of change rates,
the selection channel.7 This bound is added to the feature
maps outputted by the first layer to reinforce the output of
neurons that are most affected by embedding. The rest of the
SCA-SRNet architecture is identical to SRNet (see Figure 1)
with the first layer shown in Figure 8. Note that the batch
normalization was removed from the first layer to make sure
both signals that are added are of similar scale. The kernels
applied to the image in the first layer and those applied to
the change rates are forced to be the same, e.g., the absolute
values of the kernels are merely copied from the main
network.

Formally, for the spatial domain, with the M × N matrices
of pixel values x = (xi j ) and embedding change probabilities
β = (βi j ), the lth feature map, l = 1, . . . , 64, that enters
the second convolutional layer in the forward pass is

ReLU(W(l) � x)+ |W(l)| � β, (1)

where W(l) ∈ R
3×3 is the lth convolutional kernel from the

first layer of SRNet and ��� denotes the convolution. During
learning, the weight vectors in the main branch of the network
are copied to the selection-channel branch where the absolute
value operation is applied and the network is trained as
before.

For JPEG domain algorithms, the selection channel is
incorporated in a similar fashion. The embedding change
probabilities, however, relate to the quantized DCT coefficients
rather than pixels. Thus, as the first step, we compute the
impact of embedding on pixels as an upper bound t on the
L1 embedding distortion as in Eqs. (18–19) in [15]. This
bound in the (a, b)-th JPEG 8× 8 block, 0 ≤ a ≤ M/8 − 1,
0 ≤ a ≤ N/8 − 1 is computed as:

t(a,b)
i j =

7∑

k,l=0

| f (k,l)
i j |qklβ

(a,b)
kl , 0 ≤ i, j ≤ 7, (2)

where β
(a,b)
kl , 0 ≤ k, l ≤ 7, is the change rate corresponding to

DCT mode k, l in (a, b)-th DCT 8× 8 block, qkl is the JPEG
luminance quantization step, and

f (k,l)
i j = wkwl

4
cos

πk(2i + 1)

16
cos

πl(2 j + 1)

16
, (3)

w0 = 1/
√

2 and wk = 1 for k > 0, are the coefficients of the
DCT. The computation of the matrix t is a mere preprocessing
of the change rates and can be done outside of the network.

7βi j is the probability of modifying cover element xi j . Thus, for embedding
schemes that modify cover values by 1 or −1, βi j is the sum of the two
probabilities of changing by 1 and −1.

The bound t enters the selection-channel branch in the first
layer as shown in Figure 8. Finally, the lth feature map,
l = 1, . . . , 64, outputted by the first layer is thus

ReLU(W(l) � x)+
√
|W(l)| � t, (4)

where x is the decompressed JPEG image without rounding
to integers. The square root non-linearity is there to obtain
the same quantity as δ

1/2
uS A from [15] [15, eq. (20)] and the

discussion following this equation).
The SCA-SRNet was trained in the exact same fashion as

the original network. The results for spatial-domain steganog-
raphy are shown in Table IV. The gain is the largest for
WOW as has always been observed in all prior art on SCA
steganalysis because WOW is “overly content adaptive”. The
gain w.r.t. the original SRNet is around 1% for payloads
0.4 and 0.5 bpp and then steadily increases to 4% for the
smallest tested payload 0.1 bpp. For HILL and S-UNIWARD,
the gain ranges between 1–2%.

The JPEG results appear in Table V. The absolute gain
is small for UED-JC for quality factor 75 also because the
detection error is already rather small even with the original
SRNet. For more difficult cases, such as higher quality factors
or smaller payloads, however, the SCA SRNet gains up to 5%,
which is rather significant.

VI. CONCLUSIONS

A novel convolutional neural network architecture called
SRNet is proposed for steganalysis of digital images. SRNet
is the first steganalysis network that is free of many externally
introduced design elements previously proposed specifically
for steganalysis and forensics, such as constrained kernels,
initialization with heuristic kernels, thresholding, quantization,
and awareness of JPEG phase. Consequently, SRNet can be
trained in an end-to-end fashion from randomly initialized
convolutional kernels and in the same fashion independently
of the embedding domain. The front part of SRNet contains
seven residual layers in which pooling has been disabled
to allow the network to learn relevant “noise residuals” for
different types of embedding changes in both spatial and JPEG
domain. The design of SRNet is validated experimentally on
standard datasets and six steganographic algorithms. State-
of-the-art detection is observed in both domains with rather
significant improvements in the JPEG domain. Receiver oper-
ating characteristics for selected combinations of embedding
algorithms and payloads reveal especially favorable detection
performance for very low false-alarm rates, which is expected
to be significant for practitioners.
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While SRNet was intentionally designed to minimize the
use of heuristic design elements specific to steganalysis, it still
benefits from being informed about the probabilistic impact
of embedding in the form of the selection channel, which
points out a space for future improvements. SRNet is the first
steganalysis network that makes use of the selection channel
for JPEG domain steganalysis, a task that was achieved by
adding a bound on L1 embedding distortion to the feature
maps outputted by the first layer to reinforce the output of
neurons that are most affected by embedding.

This paper opens up a direction in steganalysis that we plan
to further pursue in the future. Since steganalysis detectors
by definition detect inconsistencies in the noise patterns of
images, they often find applications in forensics, such as for
establishing the processing history of images or detecting
inconsistencies within a single image to identify locally manip-
ulated regions.

Large advancements in steganalysis need to be followed
by revisiting the inner workings of steganographic methods
because they are often designed from feedback provided by
detectors. A lucrative possibility that has already received
attention from researchers [55] is to let two competing net-
works design the embedding algorithm within the generative-
adversarial network (GAN) [24] setup that essentially mimics
the game played by the steganographer and the stegana-
lyst. Novel steganalysis architectures, such as the SRNet,
will undoubtedly find their place to further advance this
direction.

All code used to produce the results in this paper, including
the network configuration files and other supporting code is
available from http://dde.binghamton.edu/download/.
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