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Abstract— Steganographic schemes are commonly designed
in a way to preserve image statistics or steganalytic features.
Since most of the state-of-the-art steganalytic methods employ
a machine learning (ML)-based classifier, it is reasonable to
consider countering steganalysis by trying to fool the ML classi-
fiers. However, simply applying perturbations on stego images as
adversarial examples may lead to the failure of data extraction
and introduce unexpected artifacts detectable by other classifiers.
In this paper, we present a steganographic scheme with a
novel operation called adversarial embedding (ADV-EMB), which
achieves the goal of hiding a stego message while at the same time
fooling a convolutional neural network (CNN)-based steganalyzer.
The proposed method works under the conventional framework
of distortion minimization. In particular, ADV-EMB adjusts the
costs of image elements modifications according to the gradients
back propagated from the target CNN steganalyzer. Therefore,
modification direction has a higher probability to be the same
as the inverse sign of the gradient. In this way, the so-called
adversarial stego images are generated. Experiments demonstrate
that the proposed steganographic scheme achieves better security
performance against the target adversary-unaware steganalyzer
by increasing its missed detection rate. In addition, it deteriorates
the performance of other adversary-aware steganalyzers, opening
the way to a new class of modern steganographic schemes capable
of overcoming powerful CNN-based steganalysis.

Index  Terms— Steganography,
machine learning.

steganalysis, adversarial

I. INTRODUCTION

MAGE steganography is the art and science of concealing
covert information within images. It is usually achieved by
modifying image elements, such as pixels or DCT coefficients.
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On the other side of the game, steganalysis aims to reveal the
presence of secret information by detecting whether there are
abnormal artifacts left by data embedding.

The developing history of steganography and steganalysis is
rich of interesting stories, as they compete with each other and
they benefit and evolve from the competition [1]. The earliest
steganographic method was implemented by substituting the
least significant bits of image elements with message bits. The
stego artifacts introduced by this method can be effectively
detected by Chi-squared attack [2], or steganalytic features
based on first-order statistics [3]. In this initial phase of the
competition, statistical hypothesis testing or a simple linear
classifier such as FLD (Fisher Linear Discriminant) can serve
the need of steganalysis. The first-order statistics can be
restored after data embedding, as was done in [4]. The abnor-
mal artifacts in the first-order statistics can also be avoided
as in [5] and [6]. As a consequence, more powerful stegan-
alytic features based on the second-order statistics [7], [8]
were proposed. In this period, advanced machine learning
(ML) tools, such as SVM (Support Vector Machine), were
operated on high-dimensional features (where the dimension is
typically several hundreds). These methods were very effective
in detecting steganographic schemes even if the first-order
statistics were preserved. Modern steganographic schemes
are designed under the framework of distortion minimiza-
tion [9]. The embedding cost of changing each image element
is specified by a cost function, and a coding scheme is
employed to convey information by minimizing the distortion,
which is computed as the total cost of modified elements.
The schemes in [10]-[15] use effective cost functions. As a
counter-measure, state-of-the-art steganalytic methods adopt
higher-order statistics with much higher dimensional features
(where the dimension is typically thousands or even more
than ten thousands), such as in [16]-[20]. More sophisticated
ML methods, such as the ensemble classifier [21], have also
been employed. Steganalytic methods based on deep learning
[22]-[27] have rapidly gained an increasing attention in recent
years. Without the need of designing hand-crafted features,
deep convolutional neural networks (CNN) shows a promising
way in automatic feature extraction and classification for
steganalysis. Incorporating some prior domain knowledge into
the network design, such as using high-pass filters for pre-
processing, outstanding performance can be obtained.

The high-dimensional hand-crafted or deep-learned fea-
tures with the powerful supervised ML schemes present a
great challenge to steganography. A promising strategy for
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the steganographer is to use side information which is not
available to the steganalyst, such as using the camera sensor
noise during message embedding [28] and the compression
noise during JPEG compression [12]. However, the side infor-
mation is not always available for all kinds of cover images,
especially for those already compressed in JPEG format. As a
consequence, better steganographic schemes suitable for more
general conditions are needed.

As the dimension of steganalytic features increases, it is
difficult for steganograhpy to preserve all statistical features
during data embedding. This motivates us to find a better way
to resist steganalysis by countering the ML based classifier.
Recent studies [29], [30] have shown that ML systems are
vulnerable to intentional adversarial operations. For example,
Do et al. [31] showed that the image retrieval system based
on SIFT features could be attacked by tweaking the keypoint
orientations. Chen et al. [32] showed that the performance
of an image forensics detector with a SVM classifier could
be greatly degraded by a rather simple gradient based attack.
There are also some research evidences indicating that classi-
fier based on deep learning can be easily fooled by adversarial
examples [33]-[37], which are formed by applying small but
intentional perturbations to inputs in order to make the clas-
sification model yield erroneous outputs. However, applying
adversarial perturbations as in [33] on stego images may
lead to data extraction failures. The perturbations may also
introduce unexpected artifacts detectable by other classifiers.

The progress in adversarial signal processing [38] inspired
us to design a steganographic scheme that is resistant
against ML based steganalyzers. In this paper, we propose a
scheme called ADV-EMB (Adversarial Embedding). Targeted
to counter a deep learning based steganalyzer [26], we generate
stego images via adversarial embedding, an operation that
takes into account both the embedding of the stego message
and the necessity to fool the target steganalyzer. ADV-EMB is
implemented under the framework of distortion minimization,
and based on a baseline steganographic scheme adopting
a conventional embedding mechanism. Specifically, ADV-
EMB adapts the cost assignment process by asymmetrically
adjusting a portion of embedding costs according to the
gradients backpropagated from the deep learning steganalyzer.
In order to avoid unnecessary extra modifications, the amount
of image elements with adjustable costs is kept to be minimal.
Experimental results show that the adversarial stego images
generated by ADV-EMB can successfully fool the target deep
learning steganalyzer, which was trained with several hundreds
of thousands of training images.

Note that although to some extent being similar to the ASO
(Adaptive Steganography by Oracle) scheme [39], [40] which
also utilizes the information of a classifier, ADV-EMB does
not aim to preserve any specific statistical model and does not
directly generate embedding costs as [39] and [40]. ADV-EMB
has a wider range of application than SI-UNWIARD [12],
as it does not require side information which is only available
at the steganographer’s side. The target steganalyzer can be
constructed on the steganographer’s side and does not need
to be exactly the same as the one used by a steganalyst.
At the same time as the submission of this article, a related

2075

work proposed by Zhang et al. [41] tried to iteratively add
adversarial perturbations on cover images first, and then embed
messages into the “enhanced” cover images. The stego images
generated in this way are robust against the detection of the
target steganalyzer. However, the perturbations may introduce
unexpected artifacts detectable by other non-target stegana-
lyzers. In contrast, by our proposed method without over-
adaption, although the adversarial stego images have a slightly
higher rate of modifications then conventional stego images,
they are less detectable by other advanced hand-crafted feature
based steganalyzers and deep learning based steganalyzers.

The main contributions of our work are as follows:

1) A new strategy to fool the ML based steganalyzers,
which is not based on the attempt to preserve a specific
image statistical model, is proposed. We believe this is
a promising way to counter steganalysis.

2) A practical steganographic scheme called ADV-EMB
with adversarial embedding operation is proposed.
As opposed to conventional approaches used to create
adversarial examples in other machine learning domain,
adversarial stego images generated by the ADV-EMB
scheme are capable of carrying secret information.

3) Based on the knowledge available to the steganographer
and the steganalyst, different adversarial models are
considered, wherein the proposed scheme can achieve
state-of-the-art security performance.

The rest of the paper is organized as follows. In Section II,
we give the foundation of the proposed steganographic
scheme, and differentiate two kinds of adversarial scenarios.
We present the idea as well as a practical implementation of
the proposed ADV-EMB steganographic scheme in Section III.
Extensive experiments are performed and the results are
reported in Section IV to demonstrate the performance of
the ADV-EMB scheme under different adversarial conditions
when compared to a baseline steganographic method. Conclu-
sions are presented in Section V.

II. TECHNICAL FOUNDATION

In this article, capital letters in bold are used to repre-
sent matrices. The corresponding lowercase letters are used
for matrix elements. The flourish letters are used for sets.
Specifically, cover and stego images are respectively denoted
as C = (¢;, ;)" Wand S = (s; ;)#*", where H and W are the
height and width of the image. We use Z = (z; ;)*V € Z to
denote the proposed adversarial stego image. Note that Z is a
special type of S. The corresponding image sets are denoted
as C, S, and Z, respectively.

A. Practical Evaluation Metrics for Steganographic Security

The fundamental requirement of steganalysis is to differ-
entiate stego images from cover images. To accomplish this
task in a supervised ML setting, for analyzing an image X,
the steganalyzer may train a classifier ¢¢ s with binary output
using training data from C and S, and obtain the decision
criterion as follows:

[X is a cover image, if ¢¢ s(X) =0,

1
X is a stego image, if ¢¢ s(X) = 1. )
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The trained classifier is called steganalyzer. The missed detec-
tion happens when stego images are misclassified, and the
false alarm happens when cover images are misclassified. The
corresponding error probabilities are defined as:

PYS — prige 5(S) = 0}, @)
and
PISS = Pr{ge s(C) = 1). 3)

Under equal Bayesian prior for cover and stego, the total error
rate is

¢c.s ¢c.s
ples — Pnd” + Pra” 4)
2
The goal of a steganalyst is to minimize PL°, while the goal

of a steganographer is the opposite.

B. Distortion Minimization Framework for Steganography

Under the distortion minimization framework, steganogra-
phy is formulated as an optimization problem with a payload
constraint, i.e.,

min D(C.S), st y(S) =k, 5)

where D(C, S) is a function measuring the distortion caused
by modifying C to S, w(S) represents the message payload
extracted from S, and k is the amount of payload (measured
in bits). A typical additive distortion function for ternary
embedding, such as those used in [11]-[15], is defined as:

H W
D(C,S) = > > pifolmij— 1)+ p;0(mij +1),  (6)
i=1 j=1
where m; j = s;j — c;j is the difference between the cover
and the stego elements, J(-) is an indication function:

5(x) = [1’ r =0, %)

0, otherwise,

and p:r ; and p;; are respectively the cost of increasing
and decreasing c; ; by 1. Although different steganographic
schemes may employ different cost functions, a rule of thumb
is that large cost values are assigned to elements more likely to
introduce abnormal artifacts and thus leading to low probabil-
ities of modification, and vice versa. In most schemes, p;,r ;=
Pij» leading to equal probabilities of increasing or decreasing
ci,j. With the CMD (clustering modification direction) strategy
[42], [43], the costs of increasing or decreasing are asymmet-
rically updated during embedding in favor to a synchronized
direction in neighborhood.

C. Steganographer’s Knowledge About Steganalyzer

The steganographer may have different levels of knowl-
edge about ¢¢ s, such as the classification scheme and the
training data. In this paper, we will not discuss what is the
best strategy the steganographer should take according to
the accessibility of these knowledge. Instead, we assume the
gradients of the loss function with respect to the input, which
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are backpropagated from a ML based steganalyzer ¢¢ s, are
accessible to the steganographer. This is the foundation of
the proposed steganographic scheme. In Section III, we will
propose a scheme to fool such a steganalyzer with adversarial
stego images. We will also investigate in the experimental part
how well the adversarial stego images perform under other
advanced steganalyzers (e.g., ¢(’j’ s) When the knowledge of
these steganalyzers is unavailable.

D. Steganalyst’s Knowledge About Adversarial Stego Images

If a steganalyst is unaware of the adversarial operation pre-
sented to his steganalyzer, he is called adversary-unaware ste-
ganalyst. Otherwise, he is called adversary-aware steganalyst.
One of the possible reactions of an adversary-aware stegana-
lyst is to re-train the classifier with adversarial stego samples
to obtain a new steganalyzer ¢¢ z, or use other advanced
steganalyzers (e.g., ¢(’j’ =) unknown to the steganographer. This
may present two challenging cases for a steganographer and
we will discuss these scenarios in the experiments.

III. THE PROPOSED ADV-EMB
STEGANOGRAPHIC SCHEME

In this section, we will propose a novel steganographic
scheme, called ADV-EMB, to counter a target steganalyzer.
First, we will outline the basic idea of the proposed scheme.
Then we will discuss the two most important operations in the
proposed scheme, i.e., adversarial embedding and minimizing
the amount of adjustable elements, in detail. Finally, we will
give a practical implementation of ADV-EMB.

A. Basic Idea

In the proposed scheme, the image elements are randomly
divided into two groups, i.e., a common group containing com-
mon elements, and an adjustable group containing adjustable
elements. Data embedding is performed in two phases. In the
first phase, a portion of the stego message is embedded into
the common group by using a conventional baseline stegano-
graphic scheme. In the second phase, the remaining part of
the stego message is embedded into the adjustable group by
using the proposed adversarial embedding scheme. Adjustable
elements are modified in such a way that a target steganalyzer
would output a wrong class label. We use a well-performed
deep learning based steganalyzer, i.e., Xu’s CNN [26], as
the target steganalyzer, since the gradient values of its loss
function with respect to the input can be used to guide
the modification of adjustable elements. Other steganalyzers
possessing such a property may also be used. The details will
be given in Section III-B. In order to prevent over-adaption to
the target steganalyzer and enhance the security performance
against other advanced steganalyzers, the number of adjustable
elements is minimized, resulting in a minimization problem
with constraints. The details will be given in Section III-C.

In adversarial ML, an attack with full knowledge of a
ML classifier is called a white-box attack. When the model,
parameters and training data of the target classifier are not
known, the attack is referred to as a black-box attack [44].
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In our case, we adopt a white-box assumption in designing the
steganographic scheme, however, we also test the new scheme
in black-box scenarios against feature-based and CNN-based
steganalyzers other than the targeted one (see Section IV).

B. Adversarial Embedding

Denote y as the ground truth label of X. In steganalysis,
we have y € {0, 1}, where 0 indicates a cover and 1 indicates a
stego. Let L(X, y; ¢¢.s) be the loss function of a steganalyzer
¢c.s. For example, for a deep neural network steganalyzer, the
binary decision could be given as

0, if F(X 0.5
¢c,s(X)=[ » HFX) <05, ®)

1, if F(X)>0.5,
where F(X) € [0,1] is the network output indicating the
probability that X is a stego. The corresponding loss function
may be designed in a form of cross entropy as

L(X, y; ¢c.5) = —ylog (F(X)) — (1 — y)log (1 — F(X))
©)]

In [33]-[35], adversarial examples are generated to fool
ML models by updating input elements x; ; according to
the gradient of the loss function with respect to the input
(abbreviated as gradient if it is not specified otherwise),
ie, Vx,;L(X,3; ¢c.s), by using a target label . However,
it is impossible to directly apply these methods for securing
steganography. In fact, modifying the elements of a stego
image may lead to the failure of data extraction thus contra-
dicting the aim of steganography. This motivates us to design
an embedding method with two objectives of equal impor-
tance: performing adversarial operation to combat steganalyzer
¢c,s and performing data embedding to carry information. To
this end, we propose a method that we will call adversarial
embedding to generate adversarial stego images under the
framework of steganographic distortion minimization [9].

In [33], it is observed that when a perturbation signal
associated with a target label is added to the input, the updated
input, called adversarial example, is usually misclassified into
the target class by the ML classifier. The perturbation signal
can be designed in various ways, including using the gradient
of the loss function with respect to the input. Since adding
a perturbation with the inverse sign of the gradient has an
adversarial effect, the objective of the proposed adversarial
embedding is to modify image elements in such a way that
the sign of the modification tends to be in accordance with the
inverse sign of the gradient. To achieve such an objective with
a high probability, together with data embedding, we operate
under the distortion minimization framework by making the
embedding costs bear the following properties:

p:_j < P;]’ if — VX,"I‘ L(X, )A); ¢C,S) > 0»
pili=pijs if = vy LX, §i¢cs) =0,  (10)
erj > P,-jjw if — Vxij L(X, J; #c.s) <O0.

Such costs yield asymmetric probabilities of increasing and
decreasing the element x; ;, if the gradient is not zero. In
this way, data can be embedded into the image elements, and
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the direction of the modification has the effect of inducing
the steganalyzer ¢¢ s to decide for the target label y = 0.
Please note that the adversarial embedding may lead to higher
modification rates due to the asymmetric embedding costs.

C. Minimum Amount of Adjustable Elements

With adversarial embedding, the adversarial stego images
may effectively evade steganalysis. However, since the costs
of increasing and decreasing are asymmetric, it increases the
number of changed image elements. The reason is that the
maximum entropy can only be obtained when the image
element has an equal probability of increasing and decreasing.
With the payload constraint, asymmetric costs lead to a higher
change rate when compared to symmetric costs. Although
a higher change rate may not necessarily lead to a worse
security performance, we would still like to minimize it by
reducing the frequency of adversarial embedding. This is due
to three facts. First, it is sufficient to fool the ML classifier by
using only a part of the elements to perform the adversarial
operation, as shown in [44]. In fact, it is even unnecessary to
perform adversarial embedding to those stego images which
are generated by conventional steganographic schemes but
are already incorrectly classified by the target steganalyzer.
Second, if all elements are used for adversarial embedding,
the generated adversarial stego images may be overly adapted
to the target steganalyzer and may possibly become more
detectable by other advanced steganalyzers. We may minimize
the amount of elements for adversarial embedding to prevent
introducing other detectable artifacts that can be exploited by
an adversary-aware steganalyzer. Third, when the change rate
is minimized, the image quality should be preserved better.

We propose to divide image elements into two groups ie.,
a common group containing common elements for conven-
tional steganographic embedding, and an adjustable group
containing adjustable elements for adversarial embedding. The
objective is that the amount of adjustable elements should
be minimized while the target steganalyzer should output a
wrong class label. Mathematically speaking, the problem is
formulated as

min p,

Y

where § € [0, 1] denotes the ratio of the amounts of adjustable
elements to all image elements, and w(-) and k& have the
same definition as in Eq.(5). It is obvious that there is no
explicit solution to such a problem. To solve it efficiently,
the target steganalyzer is employed to numerically search for
“just enough” amount of adjustable elements to satisfy the
constraints in (11). The details will be described in the next
subsection.

sit. ¢pc.s5(Z) =0 and y(Z) =k,

D. A Practical Implementation of ADV-EMB

In this part, we present a practical ADV-EMB stegano-
graphic scheme. Since JPEG images are widely used and
pervasive on the Internet, we use them as cover. We use
Xu-CNN [26] as the target steganalyzer and J-UNIWARD
[12] as the baseline steganographic scheme for conventional
data embedding. The target steganalyzer is a CNN model
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Fig. 1. TIllustration of the process of the proposed ADV-EMB scheme.

composed of a fixed DCT filtering layer and 20 learn-
able convolutional layers. To the best of our knowl-
edge, it achieves the best performance in detecting JPEG
image steganography. In this paper, we use JPEG cover
images and stego images generated by J-UNIWARD to
train the target steganalyzer. However, other image for-
mats, conventional embedding schemes or steganalyzers,
may also be applicable, as indicated in Section III-A.
The detailed steps of the proposed scheme are described as
follows, and Fig. 1 illustrates an example.

1) For a cover image C = (c,-,j)HXW, use a conventional
cost function (such as in J-UNIWARD) to compute the
initial embedding costs, i.e., {pzrj,pijj}, for the DCT
coefficients. Initialize the parameter f = 0.

2) Divide the elements in C into two disjoint groups, i.e.,
a common group containing [; = [H x W x (1 — )]
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common elements, and an adjustable group containing
l» = H x W —I; adjustable elements. In Fig. 1, common
group and adjustable group are labeled as blue and red
boxes respectively. The positions of these two kinds of
elements can be fixed in advance or randomized with
the details to be discussed later.

3) Embed k; = [k x (I — p)] bits into the common
group using the initial embedding costs computed in
Step 1 by applying a distortion minimization coding
scheme, such as STC (syndrome-trellis codes) [45]. The
resulting image is denoted as Z.. In Fig. 1, the modified
coefficients in common group are highlighted with blue
strides.

4) Compute the gradients v, ; L(Zc, J; ¢c,s) of the ste-
ganalyzer using the target label y = 0. Update the
embedding costs for the adjustable elements by

pZLj/a, if — Vzij L(Z,0; ¢c.s) > 0,
q:—j = erj’ if —vz,; L(Z,0; ¢c.s) =0,
_pi_,'—j-a» if — Vi L(Z,0; ¢C,S) <0,

(12)
'p,‘jj/a’ if —v,; L(Z,0; ¢c.s) <0,
q,-,_j = p,‘jj’ if —vz,; L(Z,0; ¢c.s) =0,
_Pijj-(l, if — Vi L(Z,0; ¢C,S) > 0,

13)

where a is a scaling factor larger than 1 to ensure that
equations(12) and (13) necessarily fulfill equation(10).
o is set to 2 in this work. Embed k» = k — kq bits into
the adjustable elements by using the updated embedding
costs computed from (12) and (13) and the same coding
scheme used for the common group. The resultant image
is Z. Figure 1 shows that the costs of the elements in the
adjustable group are either doubled or halved, depending
on the signs of the corresponding gradients. After data
embedding, the modified coefficients in adjustable group
are highlighted with red strides.

5) Take Z as the input of the steganalyzer ¢c s. If
¢c.s(Z) = 0, which means the adversarial stego Z can
fool the steganalyzer with a minimum value of £, use
Z as the output and terminate the embedding process.
Otherwise, the amount of adjustable elements may not
be enough. In this case, update § by f+ Ap, and repeat
Step 2 to Step S until f =1 . We use Af = 0.1 in this
work. If # =1 and ¢¢ s(Z) = 1, which corresponds to
the failure case of adversarial embedding, we just use a
conventional steganographic scheme for embedding and
output a conventional stego image.

Since the same coding scheme, such as STC, is used both
in the adjustable group and the common group, the message
receiver neither needs to be informed about the value of f,
nor needs to know which image elements belong to to the
adjustable group or the common group. Data is extracted in
the same way as the baseline steganographic scheme.

As we know, in most existing steganographic schemes, an
embedding order of image elements is generated by scram-
bling the indexes of image elements, where the scrambling
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operation is determined by a secret key shared between the
sender and the receiver. The secret key can be fixed for
different images, or changed as a session key. In the ADV-
EMB implementation, the positions of the common elements
and that of adjustable elements can be determined as follows.
First, generate an embedding order in the same way as the
baseline steganographic scheme. Then, the common group
is formed by the first [{ = [H x W x (1 — )] elements
according to the embedding order. Finally, the adjustable group
is formed by the remaining elements. In other words, the posi-
tions of adjustable elements can be fixed or randomized for
different images, depending on whether the embedding order
is fixed or randomized. We recommend randomization for
enhancing security.

IV. EXPERIMENTS

In order to evaluate the performance of the proposed ADV-
EMB scheme, we conducted the following experiments.

1) We evaluated the performance of ADV-EMB in the pres-
ence of an adversary-unaware steganalyst who trained
his steganalyzer with conventional stego images. This
corresponds to a white-box attack in adversarial exam-
ples [33] and it is the most favorable case for the
steganographer. It will be reported in Section IV-B. We
also evaluated the performance when non-target feature-
based or CNN-based steganalyzers were used.

2) We evaluated the performance of ADV-EMB in the pres-
ence of an adversary-aware steganalyst who re-trained
his steganalyzer with adversarial stego images. This
corresponds to a challenging case for the steganographer.
It will be reported in Section IV-C.

3) We simulated the situation when the knowledge of
the steganographer and that of the steganalyst were
alternatively updated. To the best of our knowledge,
this is the first work to investigate iterative adversarial
conditions for steganography and steganalysis. It will be
demonstrated in Section IV-D.

4) Experimental results in Section IV-E will show why
adversarial embedding guided by gradients and mini-
mum amount of adjustable elements are important in
the proposed scheme.

5) The role of randomizing the positions of the adjustable
elements will be discussed in Section IV-G.

6) We performed some experiments on another image set
for further evaluation, and the results will be shown in
Section IV-H.

7) We evaluated the performance on spatial domain images,
and the results will be given in Section I'V-I.

The common settings and notations in the experiments will

be described in Section IV-A. Some statistical information
about the stego image sets will be provided in Section I'V-F.

A. Settings

1) Image Set: The following two cover image sets were
respectively used.
o Basic500k, denoted by Cp. It was obtained by randomly
selecting 5 x 107 JPEG images with size larger than
256x256 from ImageNet and then cropping their left
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top 256 x256 regions. The images were further converted
to grayscale and re-compressed into JPEG format with
quality factor 75. This dataset has been used in [27] to
train CNN-based steganalyzers. Although the images in
Basic500K suffer from double/multiple JPEG compres-
sion, their use does not jeopardize the practical security
of the embedded scheme. In fact, double/multiple JPEG
compressed images are common in practice. Unless spec-
ified otherwise, the experiments were carried out on this
image set. To use the images efficiently under different
circumstances, Cp was randomly split into three disjoint
subsets, C%, C}g””, and C};”, with 2.5 x 107 images, 1.5 x
10°, and 1x 10° images, respectively. C% was used to train
the target steganalyzer, while C/"" and C}/* were used to
generate adversarial stego images. Specifically, C g " and
its stego counterparts were used for training adversary-
aware steganalyzers, and C}g’” and its stego counterparts
were used for testing the performance of both adversary-
unaware and adversary-aware steganalyzers.

o JPEG-BOSSBase, denoted by C;. In order to verify the
performance of ADV-EMB on an image set with distinct
difference from Cp, we generated this set without any
possible double JPEG compression artifacts. We used
Photoshop CS6 for demosaicking the full-resolution raw
images from the BOSSBase v1.01 image set [46] and then
converted them into grayscale images. Later we down-
sampled the obtained images with a Bicubic kernel so
that the smaller image dimension was 256. Then we
central cropped the longer dimension and we got images
of size 256 x 256. Finally, we compressed the images into
JPEG format with quality factor 75 to obtain the JPEG-
BOSSBase dataset. The experiments in Section [V-H
were carried out on this image set. C; was randomly
split into two disjoint subsets, C}/”" and C', each with
5000 images. Both C}/”" and C’’" were used to generate
adversarial stego images, and their roles are similar to
CH™ and Cy/>', respectively.

2) Steganalyzers: Four different steganalyzers were used
to evaluate the security of the steganographic schemes. The
details are described as follows.

o Xu-CNN steganalyzer [26], denoted as ¢. To the best
of our knowledge, it is the best performing date-driven
JPEG CNN steganalyzer. The 20-layer CNN steganalyzer
was proposed by Xu, and we built the CNN structure and
set all training parameters as in [26], with the only differ-
ence that the batch size was set to 100 during the training
stage, with 50 cover images and their corresponding stego
counterparts. The CNN model trained at the 100000-th
iteration was used as the steganalyzer.

o Zeng-CNN steganalyzer [27], denoted as ¢’. This deep
learning steganalyzer involves two stages, a hand-crafted
stage including quantization and truncation operation, and
a learnable stage composed of three subset networks.
We trained this steganalyzer with the same settings as
in [27].

o GFR steganalyzer [20], denoted as ¢”. It is based on
17000 histogram features generated with Gabor filters and
an FLD ensemble classifier [21].
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TABLE I
THE SECURITY PERFORMANCE (IN %) AGAINST AN ADVERSARY-UNAWARE STEGANALYZER
. 0.1 bpnzAC 0.2 bpnzAC 0.3 bpnzAC 0.4 bpnzAC 0.5 bpnzAC
Steganalyzer Steganography Testing Set

PfaPmdPe PfaPmdPe PfaPmdPe PfaPmdPe PfaPmdPe

é J-UNIWARD [12]  {CH*t Sitst} 441 423 432 325346 33.6 240248 244 175187 181 129 134 132
9,59

BB ADV-EMB {C};St,Z};St} 44.1 92.5 68.3 32.5 98.6 65.6 24.0 99.3 61.6 17.5 99.6 58.5 12.9 99.5 56.2

, J-UNIWARD [12] {C};St,s};st} 46.4 46.5 464 38.1 39.6 38.8 32.6 32.3 324 27.4 23.1 252 20.8 18.7 19.7
c?,59

BB ADV-EMB {C};“,Z};St} 46.4 54.3 50.3 38.1 51.7 44.9 32.6 48.1 40.3 27.4 432 353 20.8 38.7 29.7

1" J-UNIWARD [12] {C}B’fs’f,sgﬁ} 47.7 454 46.5 42.8 404 41.6 36.7 35.1 359 31.6 29.1 304 25.7 234 24.6
c%,589

BB ADV-EMB {CHst, ZHIst} 477 471 413 428 451 439 367 432 40.0 316 389 353 257 362 30.9

11 J-UNIWARD [12] {C};SKS};“} 48.6 47.4 48.0 45.3 443 44.8 40.0 41.6 40.8 36.0 36.4 36.2 31.0 30.7 30.8
c%,8%

BB ADV-EMB {Clst, Ztst}  48.6 47.9 483 453 459 455 400 448 423 360 402 381  31.0 353 33.2

o DCTR steganalyzer [19], denoted as ¢”’. Tt is based on
8000 dimensional DCT residual features and an FLD
ensemble classifier [21].

The steganalytic performance was evaluated by the missed
detection rate as in (2), the false alarm rate as in (3), and the
total error rate as in (4) .

3) Steganographic Schemes: We used two steganographic
schemes to generate stego images.

o J-UNIWARD [12]: It was used as a baseline stegano-
graphic scheme. The embedding costs of DCT coeffi-
cients were calculated in the wavelet domain using a
Daubechies wavelet filter bank. The corresponding stego
image sets are denoted as S, 8113, S, and S,

o« ADV-EMB: In the proposed scheme, J-UNIWARD was
used to compute the initial embedding costs and perform
the conventional embedding. The steganalyzer ¢C° S0
based on Xu-CNN was used as the target steganalg;zeBr
for adversarial embedding. The corresponding adversarial
stego image sets are denoted as Z9, Z};, Z7", and Z77.
The scaling parameter used in (12) and (13) was set to
o = 2, where we have tried o € {1.5,2,3,5, 10} and
found only minor difference in performance.

The optimal embedding simulator [9] was employed for
both J-UNIWARD and ADV-EMB. The Matlab implemen-
tation of J-UNIWARD was used'. Our proposed ADV-EMB
scheme was implemented using TensorFlow with Python inter-
face. The experiments were run on a NVIDIA Tesla K80 GPU
platform. The embedding payload was measured by bits per
non-zero cover AC DCT coefficient (bpnzAC) as in [12], [26],
and [27]. In Section I'V-B and IV-C, we conducted experiments
on 0.1, 0.2, 0.3, 0.4, and 0.5 bpnzAC. For the rest of the
experiments, we used 0.4 bpnzAC since the steganalyzers
perform better on higher payloads.

B. Performance Against an Adversary-Unaware Steganalyst
In this part, we study the case where the knowledge of
the steganalyzer is exposed to the steganographer, but the

It s
algorithms/

downloaded from http://dde.binghamton.edu/download/stego_

steganalyst is unaware of the adversarial operation and still
uses the current steganalyzer. In particular, we assume that the
Xu-CNN steganalyzer ¢Cg 595 which has been trained on the

image set {CO,Sg}, is available to the steganographer. Note
that the steganographer does not need to have {CO , Sg} given
that the steganalyzer ¢Cg 89 is known. The steganographer can

use ¢Cg 59 to generate an adversarial stego set Z}; from the

cover set C}y
We would like to know how well does the steganalyzer
‘/’Cg S0 perform on classifying {Cj/*’, Z}/*'} when compared

to classifying {C}*', SF*'}. The experimental results are
reported in Table I and the better performed results are shown
in bold. Note that under the same payload rate, the false alarm
rate Py, is the same for {C}/%', Z}/5'} and {C}}*, S}/*'}, due
to the fact that the steganalyzer was trained on {Cg,Sg}
but tested on C};s’, which is shared in {C};“,Zg”} and
{C};s’ , Syt }. However, we can observe that the missed detec-
tion rate P,y is much higher for Z 113"” than for S 113"” . These
results indicate that the adversarial stego images generated
by ADV-EMB can effective evade detection by the target
steganalyzer.

In order to investigate the case where the adversarial stego
images are analyzed by steganalyzers other than the target
one, we conducted experiments by using three advanced
steganalyzers, i.e., ¢£Z‘§ Sy qﬁgg Sy and gb/c/,j% Sy to perform
the same classification tasks. The experimental results reported
in Table I show that the performance of these detectors on
the adversarial stego images are, at least to some extent,
worse than those obtained on the stego images generated
by J-UNIWARD. Although being designed to fool a target
steganalyzer, the ADV-EMB scheme shows a certain effec-
tiveness also against non-target steganalyzers. We speculate
that this adaptability to other steganalyzers is due to the
transferability of adversarial stego images. As shown by recent
studies [44], [47], adversarial examples can be transferred
across different machine learning models as long as such
models are used to carry out the same task. Our results indicate
that this phenomenon also applies to steganalysis (at least in
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TABLE 11
THE SECURITY PERFORMANCE (IN %) AGAINST AN ADVERSARY-AWARE STEGANALYZER
. 0.1 bpnzAC 0.2 bpnzAC 0.3 bpnzAC 0.4 bpnzAC 0.5 bpnzAC
Steganalyzer Steganography Testing Set
PfaPmdPe P_faPmdPE PfaPmdPe PfaPmdPe PfaPmdPe
¢eiprn siern  J-UNIWARD [12] {CLst,SLIst} 458 42.2 440 355325 340 250 25.6 253 17.9 19.6 18.7 13.1 14.1 13.6
beiprn zltrn ADV-EMB {CLtst, ZLtst] 482 46.8 47.5 394 41.5 404 347 325 33.6 274 242 258 195 189 19.2
Gitrn giern J-UNIWARD [12] - {CH*',SH*'} 457 47.8 467 375413 394 342315 329 233272 251  20.1 19.6 19.8
B B
trn gltrn ADV-EMB {CLst, ZzLlst} 485 49.1 488 413 451 432 364 372 368 323 27.1 297 257 22.8 24.2
B "B
itrn giern  J-UNIWARD [12] {CList SLIstl 484 450 46.7  42.8 40.5 417 37.1 35.1 36.1 313 29.5 304 253 24.1 247
B B
Dorern giien ADV-EMB {CLtst, ZzLtst1 495 456 474 472 405 437 413 375 394 361 324 342 30.8 27.8 29.3
B =B
thirn giern J-UNIWARD [12] - {CH*',SP*'} 483 47.7 480  45.1 445 448 407 41.0 408  36.6 36.0 363  30.7 31.0 30.8
B B
" ADV-EMB {Clist Zitst] 488 47.8 48.3 469 444 457 430412 421  38.7 37.0 379 326 325 32.6

1trn zltrn
Cg™™Zg

the framework studied in this paper). As a result, to counter an
unknown steganalyzer, a steganographer may use a local well-
performing CNN-steganalyzer as the target steganalyzer. Such
an observation largely widens the use range of the proposed
ADV-EMB scheme.

C. Performance Against an Adversary-Aware Steganalyst

In this part, we study the case where the steganalyst is aware
of the adversarial embedding operation. As stated in Section II-
D, one of his possible reactions is to re-train the steganalyzers
with adversarial stego images. The adversarial stego images
Z}g”” and leg’” were generated as in Section IV-B, where
the steganographer only relies on the steganalyzer ¢cg 89 to
generate adversarial stego images. Then, we trained the stegan-
alyzers based on {C}"™", Z}""} and tested on {C}*, Z}/5'}.
In this way, the image sets for data embedding (i.e., C};’ " and
C};S’ ) and that for the training target steganalyzer (i.e., Cg)
were different, thus ensuring that ADV-EMB did not use any
prior knowledge of the image set.

The experimental results we obtained are reported
in Table II. It can be observed that compared to the target
steganalyzer which is easily fooled by the adversarial stego
images, a re-trained steganalyzer can better detect the adversar-
ial embedding operations. However, compared to the baseline
J-UNIWARD scheme, the proposed ADV-EMB scheme still
achieves a better security performance. For example, ADV-
EMB gets a 25.8% total error rate for 0.4 bpnzAC, which is
comparable to J-UNIWARD with 25.3% for 0.3 bpnzAC. This
means that under the same risk level of detection, ADV-EMB
attains 0.1 bpnzAC more payload. As also shown in Table II,
when we used the other three non-target steganalyzers ¢’, ¢”,
and ¢” for detection, higher total error rates are obtained on
{Cyst, 25"} than on {C}/*', S}/*'}, showing once again that
ADV-EMB outperforms the baseline scheme.

D. Sequential Iterative Process Between
Steganographer and Steganalyst

In this part, we study a scenario wherein the steganographer
and the steganalyst adjust their steganalyzer iteratively each

time by adapting their knowledge about the scheme adopted
by the adversary. It is assumed the steganographer takes the
first step and then the steganalyst takes the second, together
defining a round in the competing process.

The experiments were carried out under the following
assumptions for each round. We assume that the steganog-
rapher uses a target steganalyzer which is trained by con-
ventional stego images and adversarial stego images from all
previous rounds, as it is reasonable to use all the available
knowledge. Such a steganalyzer can be regarded as adversary-
unaware for the current round (and also future rounds), but
as adversary-aware for previous rounds. The adversary-aware
steganalyst uses the latest generated adversarial stego images
to train the steganalyzer. Such a steganalyzer may be more
focused on detecting adversarial stego images generated in
the current round.

We used the following experimental setting.

1) The -current-round-adversary-unaware steganalyst is
unaware of the adversarial stego images generated in
the current round. For the first round, conventional
stego images generated with the baseline steganographic
scheme are used for training. For the subsequent rounds,
the steganalyzer is trained on C% and the corresponding
adversarial stego images obtained in all previous rounds.

2) The steganographer sets the target steganalyzer to be the
same as the adversary-unaware steganalyzer in the cur-
rent round and tries to attack it by generating adversarial
stego images from C}g.

3) The current-round-adversary-aware steganalyst is aware
of the adversarial operation performed in the current
round. Hence the steganalyzer is trained on Cll;""
and the adversarial stego counterpart in the current
round.

4) To ease the comparison, the C};s ! and the corresponding
adversarial stego counterpart are used to evaluate the
performance for both the adversary-unaware stegana-
lyzer and the adversary-aware steganalyzer. Each ste-
ganalyzer is used to detect stego images not only in the
current round, but also in all previous rounds and future
rounds.
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TABLE III

THE STEGANALYTIC PERFORMANCE (IN %), GIVEN AS Pe (Pfq, Ppg), IN THE ITERATIVE PROCESS WHEN THE STEGANOGRAPHER
AND THE STEGANALYST ITERATIVELY UPDATE THEIR KNOWLEDGE OF THE OTHER SIDE

Testing set

{Cétst’ Zétst}

{CIIBtSt , Z.étSt}

{ClBtst7 Z}latst}

58.26 (17.13, 99.39)
25.60 (26.55, 24.65)

34.28 (17.13, 51.43)
30.81 (26.55, 35.06)

33.36 (17.13, 49.58)
28.92 (26.55, 31.29)

25.40 (24.06, 26.73)
29.11 (30.62, 27.59)

60.72 (24.06, 97.37)
28.50 (30.62, 26.37)

28.57 (24.06, 33.07)
30.57 (30.62, 30.52)

Round Steganalyzer [Clr ST
CB s ’SB s
! ¢>c0375% 17.94 (17.13, 18.75)
¢ClBt7'n’2113t7'n 21.29 (26.55, 16.03)
) ¢COB,Z%,5% 20.51 (24.06, 16.95)
¢ClBtrnyz'113trn 23.70 (30.62, 16.78)
3 ¢C°B,z'%,z%,s% 24.82 (37.21, 12.43)

¢C}B”" Fhrn 22.22 (29.17, 15.27)

27.81 (37.21, 18.40)
26.92 (29.17, 24.66)

29.41 (37.21, 21.60)
30.57 (29.17, 31.96)

66.22 (37.21, 95.23)
27.75 (29.17, 26.32)

Although the iterative process can be endless, we per-
formed three iteration rounds to illustrate the interplay
between the steganographer and steganalyst. The current-
round-adversary-unaware steganalyst used J-UNIWARD to
generate the conventional stego image set S in the first round.
The steganographer generated the adversarial stego sets Z,
7, and Z from the first to the third round, respectively. The
embedding payload was set to 0.4 bpnzAC. The performances
of current-round-adversary-unaware steganalyzer are shown
in the first row of each round, and those of current-round-
adversary-aware steganalyzer are shown in the second row
of each round. From Table III, we can draw the following

conclusions for the P,.
1) Expectedly, the adversarial stego images generated in

the current round can fool the current-round-adversary-
unaware steganalyzer with the highest P,. Compared to
conventional stego images, all kinds of adversarial stego
images achieve better security under the same stegana-
lyzer. This implies that it is better to use adversarial
stego images in any round.

2) For the current-round-adversary-unaware steganalyzers,
as iterations go on, a steganalyzer in a higher round
is less effective in detecting conventional stego images.
Since the steganalyzers in higher rounds are trained
not only on conventional stego images but also on
adversarial stego images, the results may imply that the
adversarial stego images in higher rounds disturb the
current-round-adversary-unaware steganalyzer in detect-
ing conventional stego images.

3) For the -current-round-adversary-aware steganalyzer,
although it is only trained with the adversarial stego
images from the current round, it is also (more or less)
effective to detect conventional stego images and adver-
sarial stego images from other rounds. However, there is
no clear trend to indicate whether it performs better on
adversarial stego images from previous rounds or future
rounds. For example, in Round 3, we can observe that
the detection error rate is 27.75% for the current round,
which is higher than 26.92% for the first round and lower
than 30.57% for the second round. These results seem to
show that adversarial stego images introduce somewhat
similar modifications to fool the steganalyzer, no matter
from which round.

E. Investigation on Two Important Steps in ADV-EMB

Performing adversarial embedding according to the inverse
signs of gradients and using minimum amount of adjustable
elements are the two most important steps of the ADV-
EMB scheme. In this part, we investigate the effectiveness of
each step. Both adversary-unaware and adversary-aware CNN
steganalyzers were used for the evaluation, and the embedding
payload was set to 0.4 bpnzAC.

1) Case I (Reversing the Signs in ADV-EMB): In the ADV-
EMB scheme, the embedding costs of adjustable elements are
asymmetrically adjusted according to the inverse signs of the
gradients, as shown in (12) and (13). For comparison, we used
the signs of the gradients, instead of the inverse signs, as in
the following equations, to conduct experiments:

[pif;/a, if vz, L(Ze, 0: ges) > 0,

4 =1t 0f Ve L(Ze,0:¢c5) =0, (14)
Aerj.a’ if vy, L(Z,0; ¢c.s) <0,
pi /e if Vg L(Ze, 05 de,s) <0,

q;j = p,‘jj’ if vy, L(Zc,0;¢c.s) =0, (15)
Pijj-a, if Vzi,jL(Zc,OQ ¢C,S) > 0.

The results are shown in Table IV. Compared with the previous
results (see Table I and II), the total error rate of the adversary-
unaware steganalyzer drops from 58.5% to 18.3%, and that of
the adversary-aware steganalyzer from 25.8% to 19.3%. The
degraded performance indicates that taking into account the
signs of the gradients plays an important role in producing
the adversarial effect.

2) Case II (Disabling Minimum Amount of Adjustable Ele-
ments): In the ADV-EMB scheme, the number of adjustable
elements is minimized through iteratively finding a minimum
value of £ for (11). In the comparative experiment, we used
a fixed value of g for each image, and thus the amount of
adjustable elements was the same for all the images. The
results for f = 0.1, 0.3, and 0.5 are presented in Table IV.
It can be observed that as f increases, the missed detection
rate of the adversary-unaware steganalyzer increases, but the
total error rate of the adversary-aware steganalyzer decreases.
The results indicate that when increasing the number of
adjustable elements, it becomes easier to fool the target ste-
ganalyzer. However, an excess of adversarial operations may
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TABLE IV
THE SECURITY PERFORMANCE (IN %) WITH DIFFERENT SETTING FOR ADV-EMB UNDER THE PAYLOAD OF 0.4 BPNZAC

. Case I Case II (3 = 0.1) Case II (B8 = 0.3) Case II (3 = 0.5)
Steganalyzer Testing set Pr, P Pe P, PraP: Pro Prg P Pro Prg P
¢c%,5% {cgst,zgst} 17.5 19.2 184 17.5 49.2 333 17.5 87.0 523 17.5 96.2 56.9
beirrn zitrn {CHst, Z}t} 182 205 193 239 22.8 233 23.0 22.7 228 18.1 194 187
TABLE V TABLE VI

THE FREQUENCIES OF OCCURRENCES OF £ (IN %) IN GENERATING STEGO
IMAGE SET 2}3 FOR EACH PAYLOAD. THE SUM OF EACH
COLUMN Is 100%

0.1 0.2 0.3 04 0.5
B bpnzAC  bpnzAC  bpnzAC  bpnzAC  bpnzAC
0 40.61 34.08 24.74 18.60 13.35
0.1 13.31 22.00 28.15 31.67 32.71
0.2 9.83 16.65 22.56 26.21 28.08
0.3 7.85 11.00 12.70 13.47 14.73
0.4 6.13 6.50 5.98 5.68 6.39
0.5 4.70 3.79 2.71 2.33 2.56
0.6 3.62 2.16 1.27 0.95 1.02
0.7 2.78 1.26 0.66 0.40 0.40
0.8 2.09 0.76 0.35 0.22 0.19
0.9 1.50 0.43 0.20 0.10 0.09
1 0.06 0.02 0.01 0.01 0.01
fail 7.52 1.35 0.67 0.36 0.47

introduce unnecessary artifacts, leading to easier detection by
an adversary-aware steganalyzer. Consequently, it is a better
choice to use “just enough” amount of adjustable elements by
balancing the performance of an adversary-unaware stegana-
lyzer and an adversary-aware steganalyzer.

F. Supplementary Statistical Information

To further understand the proposed ADV-EMB scheme,
we provide some supplementary statistical information on the
adversarial stego images as follows.

1) Frequency of Adversarial Embedding Operation: To
investigate the statistics on how many adjustable elements
are used in the ADV-EMB scheme, the occurrences of f in
generating the 2.5 x 10° adversarial stego images 2 113 are given
in Table V. Based on the statistics, we can make the following
observations.

o For a low payload, such as 0.1 bpnzAC, since the ste-
ganalyzer is less effective in detecting conventional stego
images, adversarial embedding is not necessary for a large
portion of the stego images, which corresponds to the case
of f = 0. As the payload increases, more stego images
requires adversarial embedding (8 # 0).

o A lower failure rate of adversarial embedding is obtained
for a higher payload (from 7.52% on 0.1 bpnzAC to
0.47% on 0.5 bpnzAC). This is due to the fact that more
elements are involved in modification as the payload
increase. For instance, less than 2% elements are used
for modification for 0.1 bpnzAC, while more than 11%
elements are used for modification for 0.5 bpnzAC,
as shown in Table VI. Note that the failure rate is exactly

THE MODIFICATION RATE COMPUTED AS THE CHANGE PER NON-ZERO
AC DCT COEFFICIENT (IN %) FOR THE TWO STEGANOGRAPHIC
SCHEMES UNDER DIFFERENT PAYLOADS

Stesanosranh 0.1 0.2 0.3 0.4 0.5
ganography bpnzAC bpnzAC bpnzAC bpnzAC bpnzAC

J-UNIWARD [12] 1.80 3.97 6.32 8.80 11.37
ADV-EMB 1.84 4.04 6.43 8.95 11.57

the same as 1 — P,y of the adversary-unaware CNN
steganalyzer given in Table I.

« For all payloads, larger values of f occur less frequently
than lower values. However, this phenomenon cannot
be taken for granted since it may be due to the spe-
cific images, the baseline steganographic scheme, the
target steganalyzer, and the step Af used to search the
minimum /.

2) Modification Rate: In Section III-C, we have stated that
adversarial embedding would lead to an increasing number of
modified image elements due to the asymmetric costs assigned
to the adjustable elements. We define the modification rate
as the ratio of the number of changed coefficients to the
total amount of non-zero AC DCT coefficients. In Table VI,
we show the averaged modification rate for J-UNIWARD and
ADV-EMB under different payloads on the image set Cll;.
As expected, we can observe that the modification rates for
ADV-EMB are slightly higher than for J-UNIWARD. Besides,
the gap in the modification rate between J-UNIWARD and
ADV-EMB widens as the payload increases (0.04%, 0.07%,
0.11%, 0.15%, 0.2% for the five payloads, respectively). This
is due to the fact that more cases of f % 0 occur for a higher
payload, as indicated in Table V. Please note that a higher
modification rate may result in lower image quality, which
may be a minor disadvantage of the proposed scheme.

G. Discussion on the Role of Randomizing
the Positions of Adjustable Elements

In our previous experiments, the positions of adjustable ele-
ments are randomized by using different embedding orders for
different images. One question is whether there is a difference
in security performance between randomized positions and
fixed positions. To answer the question, we conducted two
comparative experiments and report the results in this part.

In the first experiment, we used a fixed embedding order
for different images. As indicated in Section III-D, the fixed
embedding order results in the fixed positions of adjustable
elements. We adopted the same setting we have used in
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TABLE VII

THE SECURITY PERFORMANCE (IN %), GIVEN IN P,, OF ADV-EMB WITH
A FIXED EMBEDDING ORDER AGAINST THE ADVERSARY-UNAWARE
STEGANALYZER AND THE ADVERSARY-AWARE STEGANALYZER.
THE TESTING IMAGE SET IS {Cé’”,z}g”}. PERFORMANCE
COMPARISON WITH THE IMPLEMENTATION USING A
RANDOMIZED EMBEDDING ORDER IS SHOWN IN
THE PARENTHESIS

Steganalyzer .1 0.2 0.3 0.4 0.5
bpnzAC  bpnzAC  bpnzAC  bpnzAC  bpnzAC
b0 <o 68.32 65.61 61.68 58.58 56.24
Ch:Sp 40.02) 0.02) (10.04) (10.04) (10.01)
botirn siirn 47.49 40.60 33.05 25.18 19.05
Ce"™ 25" (10.05) (10.15) 0.58) (10.65) (0.12)
TABLE VIII

THE SECURITY PERFORMANCE (IN %) OF ADV-EMB WITH A FIXED
EMBEDDING ORDER AND A FIXED NUMBER OF ADJUSTABLE
ELEMENTS (f = 0.3) AGAINST THE ADVERSARY-UNAWARE
STEGANALYZER AND THE ADVERSARY-AWARE
STEGANALYZER. THE TESTING IMAGE
SETIs {C45!, Z}/5'}. PERFORMANCE
COMPARISON WITH THE IMPLEMENTATION
USING A RANDOMIZED EMBEDDING
ORDER IS SHOWN IN THE PARENTHESIS

Steganalyzer Py, P4 P,
¢>C% 9, 175 () 87.2 (10.2) 524 (l0.1)
¢ClBtrn JELirn 14.1 (8.9 15.1 ({7.6) 146 (8.2)

Section IV-B and IV-C. Adversary-unaware and adversary-
aware CNN-based steganalyzers were respectively used for
detection. The results we got are shown in Table VII. It
can be observed that ADV-EMB with the fixed positions of
adjustable elements and that with the randomized positions
of adjustable elements do not have obvious difference in
performance against the CNN-based steganalyzers. In the sec-
ond experiment, we used a fixed embedding order and a
fixed number of adjustable elements (f = 0.3) for each
image. The payload was set to 0.4 bpnzAC. The results we
got are given in Table VIII. It can be observed that the
performance does not change much for an adversary-unaware
steganalyzer, while it degrades greatly for an adversary-aware
steganalyzer. This phenomenon is interesting. Although the
fixed positions of adjustable elements are not directly leaked
to the adversary-aware steganalyzer, the experimental evidence
shows that the data-driven steganalyzer can automatically learn
such information. In a similar scenario, when the same key is
re-used for data embedding simulation, a CNN-based method
[48] is highly effective in detecting different stego images with
synchronized modification locations. The performance drops
greatly when different keys are used for different images. The
phenomenon does not occur for feature based steganalyzers.
We speculate that modifications in the same location may
present a chance of “collision attack” from the perspective of
CNN-based steganalyzers. The neurons may learn strong acti-
vations from the synchronized modification positions. Since
ADV-EMB employs minimum amount of adjustable elements,
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TABLE IX

THE SECURITY PERFORMANCE (IN %) ON JPEG-BOSSBASE IMAGE
SET UNDER THE PAYLOAD OF 0.4 BPNZAC

Steganalyzer Steganography Testing Set Py, Ppa Pe
¢co.s9  J-UNIWARD [12] {ct,s8'} 143 237 190
bc9, 29 ADV-EMB {ci, 2z} 203 322 263

¢y.sq  J-UNIWARD [12] {ci, 81}y 207 214 211
Zg 29 ADV-EMB {ct,z1} 238 257 247
¢y.so  JUNIWARD [12] {cl,81} 296 282 289
g(} 29 ADV-EMB {c}, 2%} 300 294 297

the collision effect is eliminated, even when a fixed embedding
order is used, as the results reported in Table VII show.

H. Performance on JPEG-BOSSBase Image Set

In this part, we evaluate the performance of ADV-EMB on
the image set JPEG-BOSSBase. The Xu-CNN steganalyzer
¢C° S0 trained on Basic500k was still used as the target

B°*~B

steganalyzer in the ADV-EMB scheme and we generated
adversarial stego images on JPEG-BOSSBase C;. We used
three adversary-aware steganalyzers to detect ADV-EMB, and
used J-UNIWARD as the baseline for comparison. The embed-
ding payload was set to 0.4 bpnzAC. From the results shown
in Table IX, we can observe that ADV-EMB performs better
than J-UNIWARD on JPEG-BOSSBase. The results indicate
that the good performance of the proposed ADV-EMB scheme
does not rely much on a specific image set.

1. Experiments on Images in Spatial Domain

In this part, we investigate whether ADV-EMB can be
extended to pixel domain staganography. The BOSSBase
v1.01 image set [46], which contains 10000 grayscale
512 x 512 images, was used and denoted by Cps. We
randomly split it into three disjoint subsets, C% 5 C gg”, and
Cllg’ss’ , respectively with 5000, 2500, and 2500 images. The
process of generating adversarial stego images is the same as
in Section IV-A, except for the baseline steganographic scheme
and the target steganalyzer. We selected S-UNIWARD [12]
as the baseline steganographic scheme. The corresponding
stego image sets are referred to as Sgs, 8113’5’", and S}g’s” .
Xu-Net [24], denoted as ¢, was used as steganalyzer. This is
a 6 layer CNN steganalyzer working in the spatial domain by
using deep learning techniques, such as, batch normalization,
1x 1 convolution, and global pooling. The Xu-Net steganalyzer
trained on {C% S,Sg ¢} Le, ¢ oo o Was used as the target
steganalyzer. The CorrespondintS,acf\fersarial stego images are
denoted as 2%, Z}i", and Z}/$'. The embedding payload
is given in bits per pixel (bpp). A hand-crafted SRM (Spatial
Rich Model) feature based steganalyzer equipped with an FLD
ensemble classifier [16], denoted as ¢’, was used for perfor-
mance evaluation. From Table X, we can observe that in the
case of adversary-unaware steganalysis, the missed detection

rate of ADV-EMB against target steganalyzer </>C% . SY under
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TABLE X

THE SECURITY PERFORMANCE (IN %) ON SPATIAL IMAGES AGAINST AN ADVERSARY-UNAWARE STEGANALYZER

0.2 b 0.4 b
Steganalyzer Steganography Testing Set PP PP
PfaPmdPe PfaPmdPE
o0 <o S-UNIWARD [12]  {CHs!,SHst} 261 425 343 195227 21.1
CLo,S
perEs ADV-EMB {clist zlsth 261 984 62.3 195 100 59.8
o S-UNIWARD [12]  {CHt, SHst} 359 28.8 324 223 19.0 207
c%4,8%
BSTES ADV-EMB {cligt, zUsth 359 333 346 223 33.7 28.0

TABLE XI

THE SECURITY PERFORMANCE (IN %) ON SPATIAL IMAGES AGAINST AN ADVERSARY-AWARE STEGANALYZER

A 0.2 bpp 0.4 bpp

Steganalyzer Steganography Testing Set
PfaPmdPe PfaPmdPe
¢eiern surn SUNIWARD [12] - {CH§', SE§'} 343396 370 214 241 22.8
Peltzn zlrn ADV-EMB {clst zlisth 352398 375 211 279 245
Phttrn grern  S-UNIWARD [12] {CLst SListt 341313 327 237 195 216

BS '“BS

ADV-EMB {Clst, Zzlsth 378 312 345 272 20.1 23.7
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o
ltrn zltrn
Cps"2ps

the payload 0.4 bpp reaches 100%, and that against qﬁ’co S0
is 5%-12% higher than S-UNIWARD. From Table XI, we can
observe that in the case of adversary-aware steganalyst, ADV-
EMB outperforms S-UNWIARD by 2% on 0.4 bpp. The
experimental results indicate that ADV-EMB can be easily

extended to work in the pixel domain.

V. CONCLUSIONS

In this paper, we proposed a novel approach to look
at the steganographic problem; namely, we proposed to embed
the stego message while simultaneously taking into account
the necessity of countering an advanced CNN-based stegana-
lyzer. Such an aim is achieved by introducing a new adversarial
embedding method, which takes both data embedding and
adversarial operation into account. A practical steganographic
scheme, ADV-EMB, which generates adversarial stego images
with minimum amount of adjustable elements, has been illus-
trated to counter a deep learning based target steganalyzer.
The extensive experiments we have carried out permitted us
to reach the following conclusions:

1) When the target steganalyzer is accessible by the
steganographer but the steganalyst is unaware of the
adversary operation, a high missed detection rate can
be achieved by ADV-EMB to counter the target stegan-
alyzer.

2) When the steganalyst is aware of the adversarial embed-
ding, and uses adversarial stego images to re-train the
steganalyzer, the proposed ADV-EMB leads to a higher
detection error rate compared to the state-of-the-art
baseline steganographic scheme, for both target and non-
target steganalyzers.

3) When both the steganographer and the steganalyst iter-
atively adjust their strategies according to the updated
knowledge about the other side, adversarial stego
images still have an advantage over their conventional
counterparts.

Our approach to adversarial embedding shows a promising
way to enhance steganographic security, still there are several
unsolved issues to consider. To start with, the proposed ADV-
EMB scheme uses only the signs of the gradients. It worths
investigating whether the amplitudes of the gradients can also
be helpful. Besides, it is worth studying on whether universal
perturbations [49] are feasible in obtaining adversarial stego
images. Furthermore, for a complete characterization of the
interplay between the steganographer and the steganalyst, it
would be interesting to resort to a game-theoretic formulation
of the problem [38], [50], [51].
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