# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A board is a NxN numpy array. A Coordinate is a tuple index into the board. A Move is a (Coordinate c | None). A PlayerMove is a (Color, Move) tuple (0, 0) is considered to be the upper left corner of the board, and (18, 0) is the lower left. """ from collections import namedtuple import copy import itertools import numpy as np import os from environment import coords N = int(os.environ.get('BOARD_SIZE', 19)) # Represent a board as a numpy array, with 0 empty, 1 is black, -1 is white. # This means that swapping colors is as simple as multiplying array by -1. WHITE, EMPTY, BLACK, FILL, KO, UNKNOWN = range(-1, 5) # Represents "group not found" in the LibertyTracker object MISSING_GROUP_ID = -1 ALL_COORDS = [(i, j) for i in range(N) for j in range(N)] EMPTY_BOARD = np.zeros([N, N], dtype=np.int8) def _check_bounds(c): return 0 <= c[0] < N and 0 <= c[1] < N NEIGHBORS = {(x, y): list(filter(_check_bounds, [ (x+1, y), (x-1, y), (x, y+1), (x, y-1)])) for x, y in ALL_COORDS} DIAGONALS = {(x, y): list(filter(_check_bounds, [ (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)])) for x, y in ALL_COORDS} class IllegalMove(Exception): pass class PlayerMove(namedtuple('PlayerMove', ['color', 'move'])): pass class PositionWithContext(namedtuple('SgfPosition', ['position', 'next_move', 'result'])): pass def place_stones(board, color, stones): for s in stones: board[s] = color def replay_position(position, result): """ Wrapper for a go.Position which replays its history. Assumes an empty start position! (i.e. no handicap, and history must be exhaustive.) Result must be passed in, since a resign cannot be inferred from position history alone. for position_w_context in replay_position(position): print(position_w_context.position) """ assert position.n == len(position.recent), "Position history is incomplete" pos = Position(komi=position.komi) for player_move in position.recent: color, next_move = player_move yield PositionWithContext(pos, next_move, result) pos = pos.play_move(next_move, color=color) def find_reached(board, c): color = board[c] chain = set([c]) reached = set() frontier = [c] while frontier: current = frontier.pop() chain.add(current) for n in NEIGHBORS[current]: if board[n] == color and n not in chain: frontier.append(n) elif board[n] != color: reached.add(n) return chain, reached def is_koish(board, c): 'Check if c is surrounded on all sides by 1 color, and return that color' if board[c] != EMPTY: return None neighbors = {board[n] for n in NEIGHBORS[c]} if len(neighbors) == 1 and EMPTY not in neighbors: return list(neighbors)[0] else: return None def is_eyeish(board, c): 'Check if c is an eye, for the purpose of restricting MC rollouts.' # pass is fine. if c is None: return color = is_koish(board, c) if color is None: return None diagonal_faults = 0 diagonals = DIAGONALS[c] if len(diagonals) < 4: diagonal_faults += 1 for d in diagonals: if not board[d] in (color, EMPTY): diagonal_faults += 1 if diagonal_faults > 1: return None else: return color class Group(namedtuple('Group', ['id', 'stones', 'liberties', 'color'])): """ stones: a frozenset of Coordinates belonging to this group liberties: a frozenset of Coordinates that are empty and adjacent to this group. color: color of this group """ def __eq__(self, other): return self.stones == other.stones and self.liberties == other.liberties and self.color == other.color class LibertyTracker(): @staticmethod def from_board(board): board = np.copy(board) curr_group_id = 0 lib_tracker = LibertyTracker() for color in (WHITE, BLACK): while color in board: curr_group_id += 1 found_color = np.where(board == color) coord = found_color[0][0], found_color[1][0] chain, reached = find_reached(board, coord) liberties = frozenset(r for r in reached if board[r] == EMPTY) new_group = Group(curr_group_id, frozenset( chain), liberties, color) lib_tracker.groups[curr_group_id] = new_group for s in chain: lib_tracker.group_index[s] = curr_group_id place_stones(board, FILL, chain) lib_tracker.max_group_id = curr_group_id liberty_counts = np.zeros([N, N], dtype=np.uint8) for group in lib_tracker.groups.values(): num_libs = len(group.liberties) for s in group.stones: liberty_counts[s] = num_libs lib_tracker.liberty_cache = liberty_counts return lib_tracker def __init__(self, group_index=None, groups=None, liberty_cache=None, max_group_id=1): # group_index: a NxN numpy array of group_ids. -1 means no group # groups: a dict of group_id to groups # liberty_cache: a NxN numpy array of liberty counts self.group_index = group_index if group_index is not None else - \ np.ones([N, N], dtype=np.int32) self.groups = groups or {} self.liberty_cache = liberty_cache if liberty_cache is not None else np.zeros([ N, N], dtype=np.uint8) self.max_group_id = max_group_id def __deepcopy__(self, memodict={}): new_group_index = np.copy(self.group_index) new_lib_cache = np.copy(self.liberty_cache) # shallow copy new_groups = copy.copy(self.groups) return LibertyTracker(new_group_index, new_groups, liberty_cache=new_lib_cache, max_group_id=self.max_group_id) def add_stone(self, color, c): assert self.group_index[c] == MISSING_GROUP_ID captured_stones = set() opponent_neighboring_group_ids = set() friendly_neighboring_group_ids = set() empty_neighbors = set() for n in NEIGHBORS[c]: neighbor_group_id = self.group_index[n] if neighbor_group_id != MISSING_GROUP_ID: neighbor_group = self.groups[neighbor_group_id] if neighbor_group.color == color: friendly_neighboring_group_ids.add(neighbor_group_id) else: opponent_neighboring_group_ids.add(neighbor_group_id) else: empty_neighbors.add(n) new_group = self._merge_from_played( color, c, empty_neighbors, friendly_neighboring_group_ids) # new_group becomes stale as _update_liberties and # _handle_captures are called; must refetch with self.groups[new_group.id] for group_id in opponent_neighboring_group_ids: neighbor_group = self.groups[group_id] if len(neighbor_group.liberties) == 1: captured = self._capture_group(group_id) captured_stones.update(captured) else: self._update_liberties(group_id, remove={c}) self._handle_captures(captured_stones) # suicide is illegal if len(self.groups[new_group.id].liberties) == 0: raise IllegalMove("Move at {} would commit suicide!\n".format(c)) return captured_stones def _merge_from_played(self, color, played, libs, other_group_ids): stones = {played} liberties = set(libs) for group_id in other_group_ids: other = self.groups.pop(group_id) stones.update(other.stones) liberties.update(other.liberties) if other_group_ids: liberties.remove(played) assert stones.isdisjoint(liberties) self.max_group_id += 1 result = Group( self.max_group_id, frozenset(stones), frozenset(liberties), color) self.groups[result.id] = result for s in result.stones: self.group_index[s] = result.id self.liberty_cache[s] = len(result.liberties) return result def _capture_group(self, group_id): dead_group = self.groups.pop(group_id) for s in dead_group.stones: self.group_index[s] = MISSING_GROUP_ID self.liberty_cache[s] = 0 return dead_group.stones def _update_liberties(self, group_id, add=set(), remove=set()): group = self.groups[group_id] new_libs = (group.liberties | add) - remove self.groups[group_id] = Group( group_id, group.stones, new_libs, group.color) new_lib_count = len(new_libs) for s in self.groups[group_id].stones: self.liberty_cache[s] = new_lib_count def _handle_captures(self, captured_stones): for s in captured_stones: for n in NEIGHBORS[s]: group_id = self.group_index[n] if group_id != MISSING_GROUP_ID: self._update_liberties(group_id, add={s}) class Position(): def __init__(self, board=None, n=0, komi=2.0, caps=(0, 0), lib_tracker=None, ko=None, recent=tuple(), board_deltas=None, to_play=BLACK): """ board: a numpy array n: an int representing moves played so far komi: a float, representing points given to the second player. caps: a (int, int) tuple of captures for B, W. lib_tracker: a LibertyTracker object ko: a Move recent: a tuple of PlayerMoves, such that recent[-1] is the last move. board_deltas: a np.array of shape (n, go.N, go.N) representing changes made to the board at each move (played move and captures). Should satisfy next_pos.board - next_pos.board_deltas[0] == pos.board to_play: BLACK or WHITE """ assert type(recent) is tuple self.board = board if board is not None else np.copy(EMPTY_BOARD) # With a full history, self.n == len(self.recent) == num moves played self.n = n self.komi = komi self.caps = caps self.lib_tracker = lib_tracker or LibertyTracker.from_board(self.board) self.ko = ko self.recent = recent self.board_deltas = board_deltas if board_deltas is not None else np.zeros([ 0, N, N], dtype=np.int8) self.to_play = to_play def __deepcopy__(self, memodict={}): new_board = np.copy(self.board) new_lib_tracker = copy.deepcopy(self.lib_tracker) return Position(new_board, self.n, self.komi, self.caps, new_lib_tracker, self.ko, self.recent, self.board_deltas, self.to_play) def __str__(self, colors=True): if colors: pretty_print_map = { WHITE: '\x1b[0;31;47mO', EMPTY: '\x1b[0;31;43m.', BLACK: '\x1b[0;31;40mX', FILL: '#', KO: '*', } else: pretty_print_map = { WHITE: 'O', EMPTY: '.', BLACK: 'X', FILL: '#', KO: '*', } board = np.copy(self.board) captures = self.caps if self.ko is not None: place_stones(board, KO, [self.ko]) raw_board_contents = [] for i in range(N): row = [' '] for j in range(N): appended = '<' if (self.recent and (i, j) == self.recent[-1].move) else ' ' row.append(pretty_print_map[board[i, j]] + appended) if colors: row.append('\x1b[0m') raw_board_contents.append(''.join(row)) row_labels = ['%2d' % i for i in range(N, 0, -1)] annotated_board_contents = [''.join(r) for r in zip( row_labels, raw_board_contents, row_labels)] header_footer_rows = [ ' ' + ' '.join('ABCDEFGHJKLMNOPQRST'[:N]) + ' '] annotated_board = '\n'.join(itertools.chain( header_footer_rows, annotated_board_contents, header_footer_rows)) details = "\nMove: {}. Captures X: {} O: {}\n".format( self.n, *captures) return annotated_board + details def is_move_suicidal(self, move): potential_libs = set() for n in NEIGHBORS[move]: neighbor_group_id = self.lib_tracker.group_index[n] if neighbor_group_id == MISSING_GROUP_ID: # at least one liberty after playing here, so not a suicide return False neighbor_group = self.lib_tracker.groups[neighbor_group_id] if neighbor_group.color == self.to_play: potential_libs |= neighbor_group.liberties elif len(neighbor_group.liberties) == 1: # would capture an opponent group if they only had one lib. return False # it's possible to suicide by connecting several friendly groups # each of which had one liberty. potential_libs -= set([move]) return not potential_libs def is_move_legal(self, move): 'Checks that a move is on an empty space, not on ko, and not suicide' if move is None: return True if self.board[move] != EMPTY: return False if move == self.ko: return False if self.is_move_suicidal(move): return False return True def all_legal_moves(self): 'Returns a np.array of size go.N**2 + 1, with 1 = legal, 0 = illegal' # by default, every move is legal legal_moves = np.ones([N, N], dtype=np.int8) # ...unless there is already a stone there legal_moves[self.board != EMPTY] = 0 # calculate which spots have 4 stones next to them # padding is because the edge always counts as a lost liberty. adjacent = np.ones([N + 2, N + 2], dtype=np.int8) adjacent[1:-1, 1:-1] = np.abs(self.board) num_adjacent_stones = (adjacent[:-2, 1:-1] + adjacent[1:-1, :-2] + adjacent[2:, 1:-1] + adjacent[1:-1, 2:]) # Surrounded spots are those that are empty and have 4 adjacent stones. surrounded_spots = np.multiply( (self.board == EMPTY), (num_adjacent_stones == 4)) # Such spots are possibly illegal, unless they are capturing something. # Iterate over and manually check each spot. for coord in np.transpose(np.nonzero(surrounded_spots)): if self.is_move_suicidal(tuple(coord)): legal_moves[tuple(coord)] = 0 # ...and retaking ko is always illegal if self.ko is not None: legal_moves[self.ko] = 0 # and pass is always legal return np.concatenate([legal_moves.ravel(), [1]]) def pass_move(self, mutate=False): pos = self if mutate else copy.deepcopy(self) pos.n += 1 pos.recent += (PlayerMove(pos.to_play, None),) pos.board_deltas = np.concatenate(( np.zeros([1, N, N], dtype=np.int8), pos.board_deltas[:6])) pos.to_play *= -1 pos.ko = None return pos def flip_playerturn(self, mutate=False): pos = self if mutate else copy.deepcopy(self) pos.ko = None pos.to_play *= -1 return pos def get_liberties(self): return self.lib_tracker.liberty_cache def play_move(self, c, color=None, mutate=False): # Obeys CGOS Rules of Play. In short: # No suicides # Chinese/area scoring # Positional superko (this is very crudely approximate at the moment.) if color is None: color = self.to_play pos = self if mutate else copy.deepcopy(self) if c is None: pos = pos.pass_move(mutate=mutate) return pos if not self.is_move_legal(c): raise IllegalMove("{} move at {} is illegal: \n{}".format( "Black" if self.to_play == BLACK else "White", coords.to_gtp(c), self)) potential_ko = is_koish(self.board, c) place_stones(pos.board, color, [c]) captured_stones = pos.lib_tracker.add_stone(color, c) place_stones(pos.board, EMPTY, captured_stones) opp_color = color * -1 new_board_delta = np.zeros([N, N], dtype=np.int8) new_board_delta[c] = color place_stones(new_board_delta, color, captured_stones) if len(captured_stones) == 1 and potential_ko == opp_color: new_ko = list(captured_stones)[0] else: new_ko = None if pos.to_play == BLACK: new_caps = (pos.caps[0] + len(captured_stones), pos.caps[1]) else: new_caps = (pos.caps[0], pos.caps[1] + len(captured_stones)) pos.n += 1 pos.caps = new_caps pos.ko = new_ko pos.recent += (PlayerMove(color, c),) # keep a rolling history of last 7 deltas - that's all we'll need to # extract the last 8 board states. pos.board_deltas = np.concatenate(( new_board_delta.reshape(1, N, N), pos.board_deltas[:6])) pos.to_play *= -1 return pos def is_game_over(self): return (len(self.recent) >= 2 and self.recent[-1].move is None and self.recent[-2].move is None) def score(self): 'Return score from B perspective. If W is winning, score is negative.' working_board = np.copy(self.board) while EMPTY in working_board: unassigned_spaces = np.where(working_board == EMPTY) c = unassigned_spaces[0][0], unassigned_spaces[1][0] territory, borders = find_reached(working_board, c) border_colors = set(working_board[b] for b in borders) X_border = BLACK in border_colors O_border = WHITE in border_colors if X_border and not O_border: territory_color = BLACK elif O_border and not X_border: territory_color = WHITE else: territory_color = UNKNOWN # dame, or seki place_stones(working_board, territory_color, territory) return np.count_nonzero(working_board == BLACK) - np.count_nonzero(working_board == WHITE) - self.komi def result(self): score = self.score() if score > 0: return 1 elif score < 0: return -1 else: return 0 def result_string(self): score = self.score() if score > 0: return 'B+' + '%.1f' % score elif score < 0: return 'W+' + '%.1f' % abs(score) else: return 'DRAW'