colaer cc847839d7 | ||
---|---|---|
src | ||
LICENSE | ||
README.md | ||
data.7z | ||
pom.xml |
README.md
基于JStarCraft实现的搜索引擎
1.项目介绍
JStarCraft RNS是一个面向信息检索领域的轻量级引擎.遵循Apache 2.0协议.
专注于解决信息检索领域的基本问题:推荐与搜索.
提供满足工业级别场景要求的推荐引擎设计与实现.
提供满足工业级别场景要求的搜索引擎设计与实现.
2.特性
- 1.跨平台
- 2.串行与并行计算
- 3.CPU与GPU硬件加速
- 4.模型保存与装载
- 5.丰富的推荐与搜索算法
- 6.丰富的脚本支持
- Groovy
- JS
- Lua
- MVEL
- Python
- Ruby
- 7.丰富的评估指标
3.安装
JStarCraft RNS要求使用者具备以下环境:
- JDK 8或者以上
- Maven 3
3.1安装JStarCraft-Core框架
git clone https://github.com/HongZhaoHua/jstarcraft-core.git
mvn install -Dmaven.test.skip=true
3.2安装JStarCraft-AI框架
git clone https://github.com/HongZhaoHua/jstarcraft-ai.git
mvn install -Dmaven.test.skip=true
3.3安装JStarCraft-RNS引擎
git clone https://github.com/HongZhaoHua/jstarcraft-rns.git
mvn install -Dmaven.test.skip=true
4.使用
4.1设置依赖
- 设置Maven依赖
<dependency>
<groupId>com.jstarcraft</groupId>
<artifactId>rns</artifactId>
<version>1.0</version>
</dependency>
- 设置Gradle依赖
compile group: 'com.jstarcraft', name: 'rns', version: '1.0'
4.2构建配置器
Properties keyValues = new Properties();
keyValues.load(this.getClass().getResourceAsStream("/data.properties"));
keyValues.load(this.getClass().getResourceAsStream("/recommend/benchmark/randomguess-test.properties"));
Configurator configurator = new Configurator(keyValues);
4.3训练与评估模型
- 构建排序任务
RankingTask task = new RankingTask(RandomGuessModel.class, configurator);
// 训练与评估排序模型
task.execute();
- 构建评分任务
RatingTask task = new RatingTask(RandomGuessModel.class, configurator);
// 训练与评估评分模型
task.execute();
4.4获取模型
// 获取模型
Model model = task.getModel();
5.概念
5.1为什么需要信息检索
随着信息技术和互联网的发展,人们逐渐从信息匮乏(Information Underload)的时代走入了信息过载(Information Overload)的时代.
无论是信息消费者还是信息生产者都遇到了挑战:
* 对于信息消费者,从海量信息中寻找信息,是一件非常困难的事情;
* 对于信息生产者,从海量信息中暴露信息,也是一件非常困难的事情;
信息检索的任务就是联系用户和信息,一方面帮助用户寻找对自己有价值的信息,另一方面帮助信息暴露给对它感兴趣的用户,从而实现信息消费者和信息生产者的双赢.
5.2搜索与推荐的异同
从信息检索的角度:
* 搜索和推荐是获取信息的两种主要手段;
* 搜索和推荐是获取信息的两种不同方式;
* 搜索(Search)是主动明确的;
* 推荐(Recommend)是被动模糊的;
搜索和推荐是两个互补的工具.
5.3JStarCraft-RNS引擎解决什么问题
JStarCraft-RNS引擎旨在解决推荐与搜索领域的两个核心任务:排序预测(Ranking)和评分预测(Rating).
5.4Ranking任务与Rating任务之间的区别
根据解决基本问题的不同,将算法与评估指标划分为排序(Ranking)与评分(Rating).
两者之间的根本区别在于目标函数的不同.
通俗点的解释:
Ranking算法基于隐式反馈数据,趋向于拟合用户的排序.(关注度)
Rating算法基于显示反馈数据,趋向于拟合用户的评分.(满意度)
5.5Rating算法能不能用于Ranking问题
关键在于具体场景中,关注度与满意度是否保持一致.
通俗点的解释:
人们关注的东西,并不一定是满意的东西.(例如:个人所得税)
6.示例
6.1JStarCraft-RNS引擎与BeanShell脚本交互
-
编写BeanShell脚本训练与评估模型并保存到Model.bsh文件
// 构建配置
keyValues = new Properties();
keyValues.load(loader.getResourceAsStream("data.properties"));
keyValues.load(loader.getResourceAsStream("model/benchmark/randomguess-test.properties"));
configurator = new Configurator(keyValues);
// 此对象会返回给Java程序
_data = new HashMap();
// 构建排序任务
task = new RankingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取排序指标
measures = task.execute();
_data.put("precision", measures.get(PrecisionEvaluator.class));
_data.put("recall", measures.get(RecallEvaluator.class));
// 构建评分任务
task = new RatingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取评分指标
measures = task.execute();
_data.put("mae", measures.get(MAEEvaluator.class));
_data.put("mse", measures.get(MSEEvaluator.class));
_data;
- 使用JStarCraft框架从Model.bsh文件加载并执行BeanShell脚本
// 获取BeanShell脚本
File file = new File(ScriptTestCase.class.getResource("Model.bsh").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置BeanShell脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置BeanShell脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行BeanShell脚本
ScriptExpression expression = new GroovyExpression(context, scope, script);
Map<String, Float> data = expression.doWith(Map.class);
Assert.assertEquals(0.005825241F, data.get("precision"), 0F);
Assert.assertEquals(0.011579763F, data.get("recall"), 0F);
Assert.assertEquals(1.2708743F, data.get("mae"), 0F);
Assert.assertEquals(2.425075F, data.get("mse"), 0F);
6.2JStarCraft-RNS引擎与Groovy脚本交互
-
编写Groovy脚本训练与评估模型并保存到Model.groovy文件
// 构建配置
def keyValues = new Properties();
keyValues.load(loader.getResourceAsStream("data.properties"));
keyValues.load(loader.getResourceAsStream("recommend/benchmark/randomguess-test.properties"));
def configurator = new Configurator(keyValues);
// 此对象会返回给Java程序
def _data = [:];
// 构建排序任务
task = new RankingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取排序指标
measures = task.execute();
_data.precision = measures.get(PrecisionEvaluator.class);
_data.recall = measures.get(RecallEvaluator.class);
// 构建评分任务
task = new RatingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取评分指标
measures = task.execute();
_data.mae = measures.get(MAEEvaluator.class);
_data.mse = measures.get(MSEEvaluator.class);
_data;
- 使用JStarCraft框架从Model.groovy文件加载并执行Groovy脚本
// 获取Groovy脚本
File file = new File(ScriptTestCase.class.getResource("Model.groovy").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置Groovy脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置Groovy脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行Groovy脚本
ScriptExpression expression = new GroovyExpression(context, scope, script);
Map<String, Float> data = expression.doWith(Map.class);
6.3JStarCraft-RNS引擎与JS脚本交互
-
编写JS脚本训练与评估模型并保存到Model.js文件
// 构建配置
var keyValues = new Properties();
keyValues.load(loader.getResourceAsStream("data.properties"));
keyValues.load(loader.getResourceAsStream("recommend/benchmark/randomguess-test.properties"));
var configurator = new Configurator([keyValues]);
// 此对象会返回给Java程序
var _data = {};
// 构建排序任务
task = new RankingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取排序指标
measures = task.execute();
_data['precision'] = measures.get(PrecisionEvaluator.class);
_data['recall'] = measures.get(RecallEvaluator.class);
// 构建评分任务
task = new RatingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取评分指标
measures = task.execute();
_data['mae'] = measures.get(MAEEvaluator.class);
_data['mse'] = measures.get(MSEEvaluator.class);
_data;
- 使用JStarCraft框架从Model.js文件加载并执行JS脚本
// 获取JS脚本
File file = new File(ScriptTestCase.class.getResource("Model.js").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置JS脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置JS脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行JS脚本
ScriptExpression expression = new JsExpression(context, scope, script);
Map<String, Float> data = expression.doWith(Map.class);
6.4JStarCraft-RNS引擎与Kotlin脚本交互
-
编写Kotlin脚本训练与评估模型并保存到Model.kt文件
// 构建配置
var keyValues = Properties();
var loader = bindings["loader"] as ClassLoader;
keyValues.load(loader.getResourceAsStream("data.properties"));
keyValues.load(loader.getResourceAsStream("model/benchmark/randomguess-test.properties"));
var option = Option(keyValues);
// 此对象会返回给Java程序
var _data = mutableMapOf<String, Float>();
// 构建排序任务
var rankingTask = RankingTask(RandomGuessModel::class.java, option);
// 训练与评估模型并获取排序指标
val rankingMeasures = rankingTask.execute();
_data["precision"] = rankingMeasures.getFloat(PrecisionEvaluator::class.java);
_data["recall"] = rankingMeasures.getFloat(RecallEvaluator::class.java);
// 构建评分任务
var ratingTask = RatingTask(RandomGuessModel::class.java, option);
// 训练与评估模型并获取评分指标
var ratingMeasures = ratingTask.execute();
_data["mae"] = ratingMeasures.getFloat(MAEEvaluator::class.java);
_data["mse"] = ratingMeasures.getFloat(MSEEvaluator::class.java);
_data;
- 使用JStarCraft框架从Model.kt文件加载并执行Kotlin脚本
// 获取Kotlin脚本
File file = new File(ScriptTestCase.class.getResource("Model.kt").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置Kotlin脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Option", MapOption.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置Kotlin脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行Kotlin脚本
ScriptExpression expression = new KotlinExpression(context, scope, script);
Map<String, Float> data = expression.doWith(Map.class);
6.5JStarCraft-RNS引擎与Lua脚本交互
-
编写Lua脚本训练与评估模型并保存到Model.lua文件
-- 构建配置
local keyValues = Properties.new();
keyValues:load(loader:getResourceAsStream("data.properties"));
keyValues:load(loader:getResourceAsStream("recommend/benchmark/randomguess-test.properties"));
local configurator = Configurator.new({ keyValues });
-- 此对象会返回给Java程序
local _data = {};
-- 构建排序任务
task = RankingTask.new(RandomGuessModel, configurator);
-- 训练与评估模型并获取排序指标
measures = task:execute();
_data["precision"] = measures:get(PrecisionEvaluator);
_data["recall"] = measures:get(RecallEvaluator);
-- 构建评分任务
task = RatingTask.new(RandomGuessModel, configurator);
-- 训练与评估模型并获取评分指标
measures = task:execute();
_data["mae"] = measures:get(MAEEvaluator);
_data["mse"] = measures:get(MSEEvaluator);
return _data;
- 使用JStarCraft框架从Model.lua文件加载并执行Lua脚本
// 获取Lua脚本
File file = new File(ScriptTestCase.class.getResource("Model.lua").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置Lua脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置Lua脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行Lua脚本
ScriptExpression expression = new LuaExpression(context, scope, script);
LuaTable data = expression.doWith(LuaTable.class);
6.6JStarCraft-RNS引擎与Python脚本交互
-
编写Python脚本训练与评估模型并保存到Model.py文件
# 构建配置
keyValues = Properties()
keyValues.load(loader.getResourceAsStream("data.properties"))
keyValues.load(loader.getResourceAsStream("recommend/benchmark/randomguess-test.properties"))
configurator = Configurator([keyValues])
# 此对象会返回给Java程序
_data = {}
# 构建排序任务
task = RankingTask(RandomGuessModel, configurator)
# 训练与评估模型并获取排序指标
measures = task.execute()
_data['precision'] = measures.get(PrecisionEvaluator)
_data['recall'] = measures.get(RecallEvaluator)
# 构建评分任务
task = RatingTask(RandomGuessModel, configurator)
# 训练与评估模型并获取评分指标
measures = task.execute()
_data['mae'] = measures.get(MAEEvaluator)
_data['mse'] = measures.get(MSEEvaluator)
- 使用JStarCraft框架从Model.py文件加载并执行Python脚本
// 设置Python环境变量
System.setProperty("python.console.encoding", StringUtility.CHARSET.name());
// 获取Python脚本
File file = new File(PythonTestCase.class.getResource("Model.py").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置Python脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置Python脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行Python脚本
ScriptExpression expression = new PythonExpression(context, scope, script);
Map<String, Double> data = expression.doWith(Map.class);
6.7JStarCraft-Ruby
-
编写Ruby脚本训练与评估模型并保存到Model.rb文件
# 构建配置
keyValues = Properties.new()
keyValues.load($loader.getResourceAsStream("data.properties"))
keyValues.load($loader.getResourceAsStream("model/benchmark/randomguess-test.properties"))
configurator = Configurator.new(keyValues)
# 此对象会返回给Java程序
_data = Hash.new()
# 构建排序任务
task = RankingTask.new(RandomGuessModel.java_class, configurator)
# 训练与评估模型并获取排序指标
measures = task.execute()
_data['precision'] = measures.get(PrecisionEvaluator.java_class)
_data['recall'] = measures.get(RecallEvaluator.java_class)
# 构建评分任务
task = RatingTask.new(RandomGuessModel.java_class, configurator)
# 训练与评估模型并获取评分指标
measures = task.execute()
_data['mae'] = measures.get(MAEEvaluator.java_class)
_data['mse'] = measures.get(MSEEvaluator.java_class)
_data;
- 使用JStarCraft框架从Model.rb文件加载并执行Ruby脚本
// 获取Ruby脚本
File file = new File(ScriptTestCase.class.getResource("Model.rb").toURI());
String script = FileUtils.readFileToString(file, StringUtility.CHARSET);
// 设置Ruby脚本使用到的Java类
ScriptContext context = new ScriptContext();
context.useClasses(Properties.class, Assert.class);
context.useClass("Configurator", MapConfigurator.class);
context.useClasses("com.jstarcraft.ai.evaluate");
context.useClasses("com.jstarcraft.rns.task");
context.useClasses("com.jstarcraft.rns.model.benchmark");
// 设置Ruby脚本使用到的Java变量
ScriptScope scope = new ScriptScope();
scope.createAttribute("loader", loader);
// 执行Ruby脚本
ScriptExpression expression = new RubyExpression(context, scope, script);
Map<String, Double> data = expression.doWith(Map.class);
Assert.assertEquals(0.005825241096317768D, data.get("precision"), 0D);
Assert.assertEquals(0.011579763144254684D, data.get("recall"), 0D);
Assert.assertEquals(1.270874261856079D, data.get("mae"), 0D);
Assert.assertEquals(2.425075054168701D, data.get("mse"), 0D);
7.对比
7.1排序模型对比
- 基准模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | AUC | MAP | MRR | NDCG | Novelty | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|
MostPopular | filmtrust | 43 | 273 | 0.92080 | 0.41246 | 0.57196 | 0.51583 | 11.79295 | 0.33230 | 0.62385 |
RandomGuess | filmtrust | 38 | 391 | 0.51922 | 0.00627 | 0.02170 | 0.01121 | 91.94900 | 0.00550 | 0.01262 |
- 协同模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | AUC | MAP | MRR | NDCG | Novelty | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|
AoBPR | filmtrust | 12448 | 253 | 0.89324 | 0.38967 | 0.53990 | 0.48338 | 21.13004 | 0.32295 | 0.56864 |
AspectRanking | filmtrust | 177 | 58 | 0.85130 | 0.15498 | 0.42480 | 0.26012 | 37.36273 | 0.13302 | 0.31292 |
BHFreeRanking | filmtrust | 5720 | 4257 | 0.92080 | 0.41316 | 0.57231 | 0.51662 | 11.79567 | 0.33276 | 0.62500 |
BPR | filmtrust | 4228 | 137 | 0.89390 | 0.39886 | 0.54790 | 0.49180 | 21.46738 | 0.32268 | 0.57623 |
BUCMRanking | filmtrust | 2111 | 1343 | 0.90782 | 0.39794 | 0.55776 | 0.49651 | 13.08073 | 0.32407 | 0.59141 |
CDAE | filmtrust | 89280 | 376 | 0.91880 | 0.40759 | 0.56855 | 0.51089 | 11.82466 | 0.33051 | 0.61967 |
CLiMF | filmtrust | 48429 | 140 | 0.88293 | 0.37395 | 0.52407 | 0.46572 | 19.38964 | 0.32049 | 0.54605 |
DeepFM | filmtrust | 69264 | 99 | 0.91679 | 0.40580 | 0.56995 | 0.50985 | 11.90242 | 0.32719 | 0.61426 |
EALS | filmtrust | 850 | 185 | 0.86132 | 0.31263 | 0.45680 | 0.39475 | 20.08964 | 0.27381 | 0.46271 |
FISMAUC | filmtrust | 2338 | 663 | 0.91216 | 0.40032 | 0.55730 | 0.50114 | 12.07469 | 0.32845 | 0.60294 |
FISMRMSE | filmtrust | 4030 | 729 | 0.91482 | 0.40795 | 0.56470 | 0.50920 | 11.91234 | 0.33044 | 0.61107 |
GBPR | filmtrust | 14827 | 150 | 0.92113 | 0.41003 | 0.57144 | 0.51464 | 11.87609 | 0.33090 | 0.62512 |
HMM | game | 38697 | 11223 | 0.80559 | 0.18156 | 0.37516 | 0.25803 | 16.01041 | 0.14572 | 0.22810 |
ItemBigram | filmtrust | 12492 | 61 | 0.88807 | 0.33520 | 0.46870 | 0.42854 | 17.11172 | 0.29191 | 0.53308 |
ItemKNNRanking | filmtrust | 2683 | 250 | 0.87438 | 0.33375 | 0.46951 | 0.41767 | 20.23449 | 0.28581 | 0.49248 |
LDA | filmtrust | 696 | 161 | 0.91980 | 0.41758 | 0.58130 | 0.52003 | 12.31348 | 0.33336 | 0.62274 |
LambdaFMStatic | game | 25052 | 27078 | 0.87064 | 0.27294 | 0.43640 | 0.34794 | 16.47330 | 0.13941 | 0.35696 |
LambdaFMWeight | game | 25232 | 28156 | 0.87339 | 0.27333 | 0.43720 | 0.34728 | 14.71413 | 0.13742 | 0.35252 |
LambdaFMDynamic | game | 74218 | 27921 | 0.87380 | 0.27288 | 0.43648 | 0.34706 | 13.50578 | 0.13822 | 0.35132 |
ListwiseMF | filmtrust | 714 | 161 | 0.90820 | 0.40511 | 0.56619 | 0.50521 | 15.53665 | 0.32944 | 0.60092 |
PLSA | filmtrust | 1027 | 116 | 0.89950 | 0.41217 | 0.57187 | 0.50597 | 16.01080 | 0.32401 | 0.58557 |
RankALS | filmtrust | 3285 | 182 | 0.85901 | 0.29255 | 0.51014 | 0.38871 | 25.27197 | 0.22931 | 0.42509 |
RankCD | product | 1442 | 8905 | 0.56271 | 0.01253 | 0.04618 | 0.02682 | 55.42019 | 0.01548 | 0.03520 |
RankSGD | filmtrust | 309 | 113 | 0.80388 | 0.23587 | 0.42290 | 0.32081 | 42.83305 | 0.19363 | 0.35374 |
RankVFCD | product | 54273 | 6524 | 0.58022 | 0.01784 | 0.06181 | 0.03664 | 62.95810 | 0.01980 | 0.04852 |
SLIM | filmtrust | 62434 | 91 | 0.91849 | 0.44851 | 0.61083 | 0.54557 | 16.67990 | 0.34019 | 0.63021 |
UserKNNRanking | filmtrust | 1154 | 229 | 0.90752 | 0.41616 | 0.57525 | 0.51393 | 12.90921 | 0.32891 | 0.60152 |
VBPR | product | 184473 | 15304 | 0.54336 | 0.00920 | 0.03522 | 0.01883 | 45.05101 | 0.01037 | 0.02266 |
WBPR | filmtrust | 20705 | 183 | 0.78072 | 0.24647 | 0.33373 | 0.30442 | 17.18609 | 0.25000 | 0.35516 |
WRMF | filmtrust | 482 | 158 | 0.90616 | 0.43278 | 0.58284 | 0.52480 | 15.17956 | 0.32918 | 0.60780 |
RankGeoFM | FourSquare | 368436 | 1093 | 0.72708 | 0.05485 | 0.24012 | 0.11057 | 37.50040 | 0.07866 | 0.08640 |
SBPR | filmtrust | 41481 | 247 | 0.91010 | 0.41189 | 0.56480 | 0.50726 | 15.67905 | 0.32440 | 0.59699 |
- 内容模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | AUC | MAP | MRR | NDCG | Novelty | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|
EFMRanking | dc_dense | 2066 | 2276 | 0.61271 | 0.01611 | 0.04631 | 0.04045 | 53.26140 | 0.02387 | 0.07357 |
TFIDF | musical_instruments | 942 | 1085 | 0.52756 | 0.01067 | 0.01917 | 0.01773 | 72.71228 | 0.00588 | 0.03103 |
7.2评分模型对比
- 基准模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | MAE | MPE | MSE |
---|---|---|---|---|---|---|
ConstantGuess | filmtrust | 137 | 45 | 1.05608 | 1.00000 | 1.42309 |
GlobalAverage | filmtrust | 60 | 13 | 0.71977 | 0.77908 | 0.85199 |
ItemAverage | filmtrust | 59 | 12 | 0.72968 | 0.97242 | 0.86413 |
ItemCluster | filmtrust | 471 | 41 | 0.71976 | 0.77908 | 0.85198 |
RandomGuess | filmtrust | 38 | 8 | 1.28622 | 0.99597 | 2.47927 |
UserAverage | filmtrust | 35 | 9 | 0.64618 | 0.97242 | 0.70172 |
UserCluster | filmtrust | 326 | 45 | 0.71977 | 0.77908 | 0.85199 |
- 协同模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | MAE | MPE | MSE |
---|---|---|---|---|---|---|
AspectRating | filmtrust | 220 | 5 | 0.65754 | 0.97918 | 0.71809 |
ASVDPlusPlus | filmtrust | 5631 | 8 | 0.71975 | 0.77921 | 0.85196 |
BiasedMF | filmtrust | 92 | 6 | 0.63157 | 0.98387 | 0.66220 |
BHFreeRating | filmtrust | 6667 | 76 | 0.71974 | 0.77908 | 0.85198 |
BPMF | filmtrust | 25942 | 52 | 0.66504 | 0.98465 | 0.70210 |
BUCMRating | filmtrust | 1843 | 30 | 0.64834 | 0.99102 | 0.67992 |
CCD | product | 15715 | 9 | 0.96670 | 0.93947 | 1.62145 |
FFM | filmtrust | 5422 | 6 | 0.63446 | 0.98413 | 0.66682 |
FMALS | filmtrust | 1854 | 5 | 0.64788 | 0.96032 | 0.73636 |
FMSGD | filmtrust | 3496 | 10 | 0.63452 | 0.98426 | 0.66710 |
GPLSA | filmtrust | 2567 | 7 | 0.67311 | 0.98972 | 0.79883 |
IRRG | filmtrust | 40284 | 6 | 0.64766 | 0.98777 | 0.73700 |
ItemKNNRating | filmtrust | 2052 | 27 | 0.62341 | 0.95394 | 0.67312 |
LDCC | filmtrust | 8650 | 84 | 0.66383 | 0.99284 | 0.70666 |
LLORMA | filmtrust | 16618 | 82 | 0.64930 | 0.96591 | 0.76067 |
MFALS | filmtrust | 2944 | 5 | 0.82939 | 0.94549 | 1.30547 |
NMF | filmtrust | 1198 | 8 | 0.67661 | 0.96604 | 0.83493 |
PMF | filmtrust | 215 | 7 | 0.72959 | 0.98165 | 0.99948 |
RBM | filmtrust | 19551 | 270 | 0.74484 | 0.98504 | 0.88968 |
RFRec | filmtrust | 16330 | 54 | 0.64008 | 0.97112 | 0.69390 |
SVDPlusPlus | filmtrust | 452 | 26 | 0.65248 | 0.99141 | 0.68289 |
URP | filmtrust | 1514 | 25 | 0.64207 | 0.99128 | 0.67122 |
UserKNNRating | filmtrust | 1121 | 135 | 0.63933 | 0.94640 | 0.69280 |
RSTE | filmtrust | 4052 | 10 | 0.64303 | 0.99206 | 0.67777 |
SocialMF | filmtrust | 918 | 13 | 0.64668 | 0.98881 | 0.68228 |
SoRec | filmtrust | 1048 | 10 | 0.64305 | 0.99232 | 0.67776 |
SoReg | filmtrust | 635 | 8 | 0.65943 | 0.96734 | 0.72760 |
TimeSVD | filmtrust | 11545 | 36 | 0.68954 | 0.93326 | 0.87783 |
TrustMF | filmtrust | 2038 | 7 | 0.63787 | 0.98985 | 0.69017 |
TrustSVD | filmtrust | 12465 | 22 | 0.61984 | 0.98933 | 0.63875 |
AssociationRule | filmtrust | 2628 | 195 | 0.90853 | 0.41801 | 0.57777 |
PersonalityDiagnosis | filmtrust | 45 | 642 | 0.72964 | 0.76620 | 1.03071 |
PRankD | filmtrust | 3321 | 170 | 0.74472 | 0.22894 | 0.32406 |
SlopeOne | filmtrust | 135 | 28 | 0.63788 | 0.96175 | 0.71057 |
- 内容模型
名称 | 数据集 | 训练 (毫秒) | 预测 (毫秒) | MAE | MPE | MSE |
---|---|---|---|---|---|---|
EFMRating | dc_dense | 659 | 8 | 0.61546 | 0.85364 | 0.78279 |
HFT | musical_instruments | 162753 | 13 | 0.64272 | 0.94886 | 0.81393 |
TopicMFAT | musical_instruments | 6907 | 7 | 0.61896 | 0.98734 | 0.72545 |
TopicMFMT | musical_instruments | 6323 | 7 | 0.61896 | 0.98734 | 0.72545 |
8.参考
8.1个性化模型说明
- 基准模型
名称 | 问题 | 说明/论文 |
---|---|---|
RandomGuess | Ranking Rating | 随机猜测 |
MostPopular | Ranking | 最受欢迎 |
ConstantGuess | Rating | 常量猜测 |
GlobalAverage | Rating | 全局平均 |
ItemAverage | Rating | 物品平均 |
ItemCluster | Rating | 物品聚类 |
UserAverage | Rating | 用户平均 |
UserCluster | Rating | 用户聚类 |
- 协同模型
名称 | 问题 | 说明/论文 |
---|---|---|
AspectModel | Ranking Rating | Latent class models for collaborative filtering |
BHFree | Ranking Rating | Balancing Prediction and Recommendation Accuracy: Hierarchical Latent Factors for Preference Data |
BUCM | Ranking Rating | Modeling Item Selection and Relevance for Accurate Recommendations |
ItemKNN | Ranking Rating | 基于物品的协同过滤 |
UserKNN | Ranking Rating | 基于用户的协同过滤 |
AoBPR | Ranking | Improving pairwise learning for item recommendation from implicit feedback |
BPR | Ranking | BPR: Bayesian Personalized Ranking from Implicit Feedback |
CLiMF | Ranking | CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering |
EALS | Ranking | Collaborative filtering for implicit feedback dataset |
FISM | Ranking | FISM: Factored Item Similarity Models for Top-N Recommender Systems |
GBPR | Ranking | GBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering |
HMMForCF | Ranking | A Hidden Markov Model Purpose: A class for the model, including parameters |
ItemBigram | Ranking | Topic Modeling: Beyond Bag-of-Words |
LambdaFM | Ranking | LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates |
LDA | Ranking | Latent Dirichlet Allocation for implicit feedback |
ListwiseMF | Ranking | List-wise learning to rank with matrix factorization for collaborative filtering |
PLSA | Ranking | Latent semantic models for collaborative filtering |
RankALS | Ranking | Alternating Least Squares for Personalized Ranking |
RankSGD | Ranking | Collaborative Filtering Ensemble for Ranking |
SLIM | Ranking | SLIM: Sparse Linear Methods for Top-N Recommender Systems |
WBPR | Ranking | Bayesian Personalized Ranking for Non-Uniformly Sampled Items |
WRMF | Ranking | Collaborative filtering for implicit feedback datasets |
Rank-GeoFM | Ranking | Rank-GeoFM: A ranking based geographical factorization method for point of interest recommendation |
SBPR | Ranking | Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering |
AssociationRule | Ranking | A Recommendation Algorithm Using Multi-Level Association Rules |
PRankD | Ranking | Personalised ranking with diversity |
AsymmetricSVD++ | Rating | Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model |
AutoRec | Rating | AutoRec: Autoencoders Meet Collaborative Filtering |
BPMF | Rating | Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo |
CCD | Rating | Large-Scale Parallel Collaborative Filtering for the Netflix Prize |
FFM | Rating | Field Aware Factorization Machines for CTR Prediction |
GPLSA | Rating | Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis |
IRRG | Rating | Exploiting Implicit Item Relationships for Recommender Systems |
MFALS | Rating | Large-Scale Parallel Collaborative Filtering for the Netflix Prize |
NMF | Rating | Algorithms for Non-negative Matrix Factorization |
PMF | Rating | PMF: Probabilistic Matrix Factorization |
RBM | Rating | Restricted Boltzman Machines for Collaborative Filtering |
RF-Rec | Rating | RF-Rec: Fast and Accurate Computation of Recommendations based on Rating Frequencies |
SVD++ | Rating | Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model |
URP | Rating | User Rating Profile: a LDA model for rating prediction |
RSTE | Rating | Learning to Recommend with Social Trust Ensemble |
SocialMF | Rating | A matrix factorization technique with trust propagation for recommendation in social networks |
SoRec | Rating | SoRec: Social recommendation using probabilistic matrix factorization |
SoReg | Rating | Recommender systems with social regularization |
TimeSVD++ | Rating | Collaborative Filtering with Temporal Dynamics |
TrustMF | Rating | Social Collaborative Filtering by Trust |
TrustSVD | Rating | TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings |
PersonalityDiagnosis | Rating | A brief introduction to Personality Diagnosis |
SlopeOne | Rating | Slope One Predictors for Online Rating-Based Collaborative Filtering |
- 内容模型
名称 | 问题 | 说明/论文 |
---|---|---|
EFM | Ranking Rating | Explicit factor models for explainable recommendation based on phrase-level sentiment analysis |
TF-IDF | Ranking | 词频-逆文档频率 |
HFT | Rating | Hidden factors and hidden topics: understanding rating dimensions with review text |
TopicMF | Rating | TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation |
8.2数据集说明
- Amazon Dataset
- Bibsonomy Dataset
- BookCrossing Dataset
- Ciao Dataset
- Douban Dataset
- Eachmovie Dataset
- Epinions Dataset
- Foursquare Dataset
- Goodbooks Dataset
- Gowalla Dataset
- HetRec2011 Dataset
- Jest Joker Dataset
- Large Movie Review Dataset
- MovieLens Dataset
- Newsgroups Dataset
- Stanford Large Network Dataset
- Serendipity 2018 Dataset
- Wikilens Dataset
- Yelp Dataset
- Yongfeng Zhang Dataset