scan-context/src2/python/Distance_SC.py

73 lines
1.9 KiB
Python
Raw Normal View History

2021-10-19 00:52:28 +00:00
import numpy as np
def distance_sc(sc1, sc2):
num_sectors = sc1.shape[1]
# repeate to move 1 columns
sim_for_each_cols = np.zeros(num_sectors)
for i in range(num_sectors):
# Shift
one_step = 1 # const
sc1 = np.roll(sc1, one_step, axis=1) # columne shift
#compare
sum_of_cos_sim = 0
num_col_engaged = 0
for j in range(num_sectors):
col_j_1 = sc1[:, j]
col_j_2 = sc2[:, j]
if (~np.any(col_j_1) or ~np.any(col_j_2)):
continue
# calc sim
cos_similarity = np.dot(col_j_1, col_j_2) / (np.linalg.norm(col_j_1) * np.linalg.norm(col_j_2))
sum_of_cos_sim = sum_of_cos_sim + cos_similarity
num_col_engaged = num_col_engaged + 1
# devided by num_col_engaged: So, even if there are many columns that are excluded from the calculation, we
# can get high scores if other columns are well fit.
sim_for_each_cols[i] = sum_of_cos_sim / num_col_engaged
sim = max(sim_for_each_cols)
dist = 1 - sim
return dist
if __name__ == "__main__":
from python.make_sc_example import *
bin_dir = '../sample_data/KITTI/00/velodyne/'
bin_db = kitti_vlp_database(bin_dir)
SCs = []
for bin_idx in range(bin_db.num_bins):
bin_file_name = bin_db.bin_files[bin_idx]
bin_path = bin_db.bin_dir + bin_file_name
sc = ScanContext(bin_dir, bin_file_name)
# fig_idx = 1
# # sc.plot_multiple_sc(fig_idx)
#
# print(len(sc.SCs))
SCs.append(sc.SCs[0])
sc_1a = SCs[0]
sc_1b = SCs[1]
sc_2a = SCs[2]
sc_2b = SCs[3]
dist_1a_1b = distance_sc(sc_1a, sc_1b)
dist_1b_2a = distance_sc(sc_1b, sc_2a)
dist_1a_2a = distance_sc(sc_1a, sc_2a)
dist_2a_2b = distance_sc(sc_2a, sc_2b)
print("--------------------")
print(dist_1a_1b)
print(dist_1b_2a)
print(dist_1a_2a)
print(dist_2a_2b)